I feel really privileged to be given this opportunity to address tunnel engineers throughout the world on the occasion of the publishing of the 2016 edition of Tunnelling Activities in Japan, the biennial publication of the Japan Tunnelling Association. Despite the fact that in recent years tunnel construction projects in Japan are on the downturn, our country remains one of the outstanding global leaders in terms of tunnel construction volume.

The Japan Tunnelling Association was founded in August of 1975 and will celebrate its 40th anniversary in 2016. During this time, the increase in demand for tunnel construction and the progress of technology has been remarkable. Efforts to improve the efficiency and cost-effectiveness of tunnel construction have led to steady development of various types of tunneling technologies, bringing about current developments. In recent years, in order to contribute to economic activity and regional interchange, big projects have been underway in Japan in the fields of road and railways.

Along with utilizing the tunneling technology that has been accumulated up to the present, these projects seek to develop and improve technology that will streamline construction even further. In order to respond to these needs, along with technology that has been amassed to date, we are continuing to tackle improvement and development of new technologies.

On the other hand, there are extensive reserves of tunnel structures that have been accumulated in the past. Along with utilizing these structures safely and securely, in order to bequeath them to the next generation as sound assets, we are working to gather knowledge of members regarding technical development and innovation relating to proper maintenance and updates.

Recently, taking full advantage of the superior tunneling technology of Japan, many Japanese companies have been broken through and had success in major overseas projects.

This booklet presents a selection of some typical examples representative of the numerous tunnel projects and technological developments in Japan. I will be pleased if these articles prove useful for tunnel engineers around the world.

-- Nobuhiko SATO
President
Japan Tunnelling Association

Cover Photograph by
Yoshitomo Hoshino/As
"A single track (一ノ口) Ipponmichi?*" Nanakuma Line, Fukuoka Municipal Subway
Contents

01 Construction of a JIS Box Culvert with a Small Separation of 40 cm from the Pier Footing of the Shinkansen Line .. 2
02 Large Sectional Boring as Part of the Mountain NATM Tunnel in Fukuoka City
 - Fukuoka City Hakata Subway Station on the Nishihama Line (tentative name) - 3
03 Application of SENS (the extruded concrete lining system with shield) in Urban Areas with Small Overburden .. 4
04 Design and Construction of an Intersection Tunnel with Large Section
 - Hakata Shinkansen Line, Shink Hakata Tunnel - ... 5
05 Summary of the Tunneling Projects along the Chuo Shinkansen Line (between Shinagawa and Nigoya) 6
06 Construction of the Tokyo Outer Ring Road .. 7
07 Tunnel Construction with Consideration of the Groundwater Environment
 - Shin-Meishin Expressway, Minoh Tunnel - .. 8
08 Construction of Four Large-diameter Sharply-curved Shield Tunnels
 - Metropolitan Expressway Yohogawa Circular Northern Route, Baba Interchange - 9
09 Enlarging an Aged Tunnel while Keeping Traffic in Service
 - Shimoda Minami Bypass on National Highway No. 388 - .. 10
10 Technology of Controlling Damage in Tunnels Subjected to a Large Seismic Motion,
 Developed in the Shield Tunnel on the Yamanotgawa Route of Hanshin Expressway 11
11 Gravity-type Precast Floor Slab Components Placed behind a Boring Machine 12
12 Enlargement of a Shield Tunnel without Interrupting Traffic
 - Ohashi Shield Tunnel, Central Circular Route of the Metropolitan Expressway - 13
13 Long-term Lining Concrete Curing Using New Telescopic Centre
 - Genko Daitichi Tunnel on the Shin-Tomei Expressway - ... 14
14 Prolonging Service Life of Sewer Pipes by the SPR Method for Various Cross Sections 15
15 Construction of a Long NATM Tunnel with High Overburden, Water Ingress and Hot Rocks
 - Pahang-Selangor Raw Water Transfer Tunnel, Malaysia - ... 16
16 Successfully Joining Tunnels at Great Depths and Under High Water Pressure Relying on Deformation Analysis - Second Tameike Sewer Trunk Line, Tokyo - 17
17 Solutions to Deal with Soil Contamination in Construction of the Narumi Utility Tunnel (Shield) 18
18 Observational Method of Shafts in the Horonobe Underground Research Center 19
19 Rapid Construction Using Long-hole Hasting in a Small-section Tunnel ... 20
20 New Technique to Inhibit Heaving of Road Surfaces in Tunnels without Closing Traffic
 - Nagano Expressway, Ippomatsuo Tunnel - .. 21

Innovations in Technology

21 New Rapid Non-core Drilling System for Long Distances .. 22
22 Development of a Sophisticated SB-Joint for Shield Tunnels ... 23
23 Invert Displacement Gauge - Ground swelling measurement during tunnel construction - 24
24 New 3D Deformation Measuring System Combining a Laser Scanner and Image Processing Technology 24

General Aspects of Tunneling in Japan .. 25
List of Members .. 26
Construction of a JES Box Culvert with a Small Separation of 40 cm from the Pier Footing of the Shinkansen Line

Takashi Saito
Manager, Company Structural Engineering Center, East Japan Railway Company

Overview
As a part of Route No. 26, an auxiliary road of the Tokyo Metropolitan City Planning Road, construction of a box culvert (11.5 m wide, 7.7 m high, 31.6 m long) was planned with one layer and a single span, located at a depth of 0.57 m underground between Shinagawa and Nishi-Oi of JR Yokosuka Line. In the vicinity of the planned route, there was a viaduct railway of the Tokaido Shinkansen running parallel with the JR Yokosuka Line. The road culvert was to be built from this elevated track, separated by only about 40 cm at the minimum, an unprecedented proximity we had not attempted in the past (Fig. 1, Photo 1).

Construction method
At this construction site for building required structures underground in the direction running across a railroad that lies above the site, we adopted a HEP & JES method (High-speed Element Pull Method and Joint Element Structure Method), which enables us to avoid the need to resort to a CUT and Cover method. The characteristic of this method is that rectangular box-shaped steel elements with small section and possessing special joints (JES joints) are placed into the ground one by one, and, by filling the interlocked joints of the elements with grout cement, are unified to form a rectangular monolithic block structure. The structure thus shaped is able to control not merely the effect of altered ground surface, but also the impact on the surrounding structures. So far, we have successfully completed 130 HEP & JES projects.

Summary of the construction
In the vicinity of the footing of the Shinkansen pier, a concrete bulkhead was built between the footing and the new box culvert. By using the bulkhead thus provided as a retaining wall, excavation was completed up to the lower height of the upper floor slab elements, while installing supports. Then the elements were introduced and installed into the ground. At the section located immediately under the railroad, elements were placed through excavation by manual labor during the night when there was no train traffic.

In order to determine the impact of this approach on the Shinkansen piers, a line gauge system was provided along the girders of the viaduct to measure horizontal and vertical displacements. At the time of placing retaining wall elements underground, horizontal and vertical displacements were measured. This result showed that both horizontal and vertical displacements were within the predetermined warning values, 3.2 mm and 4.8 mm respectively. In the same way, for placement of the upper floor slab elements at a depth of 0.57 m immediately under the railway, we used a displacement gauge system of link type, and obtained a maximum vertical displacement of 5.4 mm (Photo 2). In the project of building the elements of a box culvert using the HEP & JES Method near the Shinkansen piers and just under the railway, we were able to complete the project successfully by keeping the impact on the railway as small as possible.

Fig. 1 Longitudinal profile

Photo 1 Construction site

Photo 2 Box culvert

Photo 3 Track displacement measurement at the railway track crossing point
The Fukuoka City Bureau of Transportation is constructing an extension subway line to link Tenjin-minami and Hakata stations as part of the Fukuoka Municipal Subway. This new line will make travelling from the southwestern area of Fukuoka City to the midtown area, as well as trips within the midtown itself more convenient, and will alleviate road congestion in the city and reduce crowding in trains on the subway airport line. The section of construction concerned is about 1.4 km long and scheduled to open in FY 2020 (Fig. 1).

In the Hakata station section (tentative name), construction is a joint venture of Taisei, Sato, Morimoto, Sanki and Saiko, and the section is divided to two segments, one is 83.7 m long using the Cut & Cover Method and the other 195.6 m using the NATM, with a total length of 279.3 m.

Geology conditions

The in-situ ground is a mudstone/sandstone alternating strata of the Paleogene period (Fig. 2). The boundary geology of soil/bond rock laying at GL-13 to -22 m has a low hardness and strength factors, with a deformation modulus with MPa of 32 to 130, and a uniaxial compressive strength of 0.1 to 0.6 MPa. Under the effect of strong weathering and alteration, the solidification is so weak that collapse of the crown and cutting face are expected if exposed to such adverse conditions during tunneling. The overburden above the main tunnel ranges from approximately 17 to 20 m in depth (1.0 to 1.8 D, D = tunnel width). At the site of a large sectional portion forming a part of the main tunnel (excavation cross-section about 150 m²), the rock overburden is small, about 1.0 m (0.05 D) (Fig. 3).

Considerations for measurement

This plan typically includes measurement of displacements in the tunnel and of settlements on the surface (measurement A), and measurement of stress on support members (measurement B). Moreover, we planned to measure displacement of the structures existing in the vicinity, and examined appropriate auxiliary methods to prevent possible settlement and displacement ahead of the tunnel face. Consequently, in order to reduce the impact on the structures as well as the risk of the cutting face collapsing, measurements have been continuously made on the subsidence of the ground ahead of the cutting face and on the heaving of the face.

Issues and measures to be taken for tunneling

There is a highway on the ground surface above the tunnel, and in the vicinity underground, an entrance to a parking lot, a trunk sewer and gas supply ducts. From the viewpoint of maintenance, repair and safety, subsidence allowances at different parts concerned are small. Given a shallow overburden and proximity of the site to the surrounding structures, it is necessary that construction be deliberate with strict monitoring of measurements. To this end, it is essential to perform inverse analysis from measurements and feedback information in actual construction.

In the future, we will continue effective auxiliary methods at the proper time with the aid of an observational construction approach so that tunneling may be performed carefully and safely.
Application of SENS (the extruded concrete lining system with shield) in Urban Areas with Small Overburden

Tomoochi MATSUO > Shinkansen Construction Site Office, Tokyo Regional Bureau, Railway Construction Headquarters, Japan Railway Construction, Transport and Technology Agency (JR TTD)

The Sotetsu-JR Direct Connection Line is a metropolitan railway with a total length of 2.7 km. The Nishiya Tunnel (Fig. 1) is a double-track railway tunnel with a length of 1.4 km (external diameter of 10.4 m).

Characteristics of construction of the Nishiya Tunnel

This is the third case of construction with ‘Casting Support Tunneling System using TBM’ (hereinafter referred to as “SENS”) in Japan.

One of the characteristics of SENS is that the primary lining is made of cast-in-place concrete, so the earth pressure at the face and the concrete placement pressure could cause displacement of the ground surface. The Nishiya Tunnel crosses under an arterial road with an overburden of approximately 6.8 m. This arterial road has a heavy traffic of approximately 25,000 vehicles daily. Also, there are numerous utilities beneath the arterial road, including water and sewerage pipes, gas pipes, rainwater and sewer manholes, and telephone cables (Fig. 1). Widespread ground displacement would have an extremely large social impact, so in this case it was necessary to set appropriate limits for the earth pressure at the face and the concrete placement pressure in order to avoid affecting such facilities.

Excavation control under the arterial road

Displacement control values during the boring were determined considering opinions from administrators of the arterial road and the respective facilities beneath the road. The strictest displacement control values were determined with regard to gas pipes: ±8 mm. In order to enable swift response to the displacement, we established displacement control target values. The road surface was measured every two hours at points on the road surface using settlement rods installed in the gas pipes. Supplementary automatic measurements of displacement of the road surface were also taken (once every five minutes) using a total station.

The method for setting control values for the earth pressure at the face and the concrete placement pressure was determined based on the construction results in a trial zone provided within the starting yard. Based on the primary control value for the gas pipes and the maximum control value of ±2 mm obtained through ground surface measurements in the area with small overburden in the actual excavation, the displacement control target value was set at ±4 mm and a construction flowchart was created for the crossing range under Route 16.

Construction results

Figure 2 shows the results for the two points with the largest displacement from manual measurements and the measurements made using settlement rods (Fig. 1: road surface measurement point (1) and gas pipe measurement point). A tendency for bulging was observed even before the passage of the face, and the Displacement control target value for the gas pipes (+4 mm) was surpassed during 1144R (1.2 m/R) construction, so to reduce the earth pressure at the face and the concrete placement pressure. Further adjustments in the pressure were made as work progressed, and eventually excavation below the arterial road was completed without exceeding the primary control value of ±8 mm. The results confirmed that using appropriate measurements to control earth pressure at the face and during concrete placement enables the application of SENS in diluvial formations even in urban areas.
Design and Construction of an Intersection Tunnel with Large Section
- Hokuriku Shinkansen Line, Shin-Hokuriku Tunnel -

Koki WAKABAYASHI

The Shin-Hokuriku Tunnel is 19.5 km, the longest in the Hokuriku Shinkansen extension. For the convenience of construction, it was divided into several sections, of which, the Okunono Segment, including a main tunnel of 4,880 m in length and an inclined shaft of 298 m, is considered to be the most challenging.

The intersection point of the inclined shaft and main tunnel is designed with a large excavation cross section to install electric equipment. The cross section is approximately 130 m² while the standard section size is 80 m².

Construction at the intersection

The intersection of the inclined shaft tunnel and main tunnel is structurally weak with a concentration of stress due to the lack of supports. When the in-situ ground condition is poor, a commonly used excavation method is to access the intersection diagonally above from the inclined shaft to the main tunnel. However, this approach is not economical and requires longer construction time due to installation and removal of temporary supports.

On the other hand, the construction segment had an overburden of about 45 m, and the spreading of a comparatively solid and hard rock mass was predicted from a preliminary survey and excavation of the inclined shaft. For economic reasons and to shorten the construction period, we first excavated the joining part perpendicular to the main tunnel by building temporary supports to match the height of the finished crown, and then the main tunnel was expanded to the right and left removing the supports (Fig. 1). In addition, we used the bench cut method to excavate the face by dividing it into the smallest sections possible.

Numerical analysis and design

Forces of the supports were analyzed numerically for both upper extended temporary supports at the connection and auxiliary supports at support-free section. The former includes two-dimensional finite element analyses of support strength and crown settlement of the tunnel. The latter includes frame analyses of the auxiliary supports referring to conventional methods of the allowable stress design. In the study, it was assumed that 60% of the ground stress acts on the supports due to excavation and sequential redistribution of the stress.

Results of construction and measurement

The ground of the intersection was relatively hard rock mass with no water ingress and the cutting face was stable with no loosening and adverse alteration at the support members. The crown settlement at the center of the main tunnel was about 10 mm when the inclined shaft-joining portion was completed, and as boring for the main tunnel progressed, it increased to about 20 mm. Accordingly, the settlement and stress for the crown of the portion without support were slightly larger than calculated by the analysis (Table 1 and Fig. 2).

Due to some differences in the properties of the ground, the measurements on the reinforcement members at the missing part were slightly larger than calculated. It can be said that the analysis, although a simple type, was able to successfully predict the critical behavior of reinforcement supports of the portion without support with high precision. As a result, the tunnel intersection was completed successfully and safely thanks to visual inspection and management of measurements during construction.
Central Japan Railway Company (JR Central) plans to build a Superconductive Maglev Chuo Shinkansen line. The current Tokaido Shinkansen line is under operation connecting Japan’s three mega cities, Tokyo, Nagoya, and Osaka. This new Maglev line, is expected to assume a central role for railway transportation in the future as an alternative to the Tokaido Shinkansen.

The plan for construction of the first segment from Tokyo to Nagoya (see map) was licensed by the Ministry of Land, Infrastructure, Transport and Tourism on October 2014. 86% of the new line of 286 km is to be underground in tunnels. The Chuo Shinkansen uses a superconducting Maglev system with a maximum speed of 500 km/h and with a maximum gradeability of 40%. These unique and advantageous technologies will be integrated into the alignment plan for the Chuo Shinkansen line.

Planning of urban tunnels along the Chuo Shinkansen line

According to the plan, the underground route will traverse the metropolitan area of about 40 km from the Shinagawa Station on Tokyo side, and that of about 20 km from the Nagoya Station. Under the Act on Special Measures concerning Public Use of Deep Underground, this railway is required to be constructed underground at as large a depth as possible because it travels through metropolitan areas. To meet these requirements, the segment around the station must pass at a steep slope to reach such depths, and for the major parts of the course from station to station, it will pass deeply underground at 40 m or more. In addition, in order to provide for efficient ventilation and smooth evacuation in emergencies, emergency exits of around 30 m in diameter, which can be used for both ventilation and evacuation, will be constructed at intervals of about five kilometers; the starting and arrival shafts also will be converted to this function, after their use ends.

Planning for mountain tunneling

Some mountain tunnels on the course of the Chuo Shinkansen line (between Shinagawa and Nagoya) are also to be constructed on the maglev line: two of these tunnels will be extremely long, one on the route of Yamanashi, Shizuoka and Nagano (Minami Alps Tunnel) and the other on the Nagano-Gifu route (Chuo Alps Tunnel), each exceeding 20 km. Since the Minami Alps tunnel passes under the most prominent mountain range in Japan, this alignment needs to be bored at the steepest upward slope and with a maximum overburden of about 1400 m. Considering the above condition, we are now developing a boring machine with much better performance than ever. This system is expected to provide the capability of boring the tunnel at high speed, with a large diameter and highly precise control, by understanding the geology ahead of the cutting face.

For the construction of the Chuo Shinkansen line, we will adopt state-of-art technologies for measurement, evaluation and construction methods, and focus our efforts on work safety, environmental preservation, and cooperation with local communities.
Summary of the project and current status

The Tokyo Outer Ring Road, one of the three ring roads in the metropolitan area, was an arterial high-standard highway about 85 km long, for traffic in a radius of about 15 km from the metropolitan center (Fig. 1). The segment between Kan-etsu Expressway and Tomei Expressway (approximately 16.2 km of the total length) was decided to be built in 1966 as an elevated highway as part of the Expressway (approximately 16.2 km of the total length) was decided to be built in 1966 as an elevated highway as part of the project, we publically solicited solutions for an underground enlargement method, and are currently verifying the techniques proposed.

Challenging issues and countermeasures

1. Shield tunneling of the main road

Prior to the tunneling project, in order to bore a long distance tunnel quickly and steadily, we examined construction management technologies, including monitoring, as well as auxiliary techniques. Since the tunnel starting from Oizumi was known to interfere with the reinforced concrete foundation piles of the existing elevated bridge, we verified a technology of coping with the problems relating to the in-situ piles interfering with the shield tunnel.

2. Underground portion needing a width enlargement

At places merging with ramp tunnels to the Tomei junction, Chuo junction and Omekaido interchange, it is necessary for the main tunnel to be enlarged underground without using the Cut & Cover Method (hereinafter called “underground enlarged portion”). To meet the requirements above, the committee set up a feasibility study to study a “basically circular geometry” which is able to have a “sufficiently wide zone of water tightness.” Prior to the project, we publically solicited solutions for an underground enlargement method, and are currently verifying the techniques proposed.
Tunnel Construction with Consideration of the Groundwater Environment - Shin-Meishin Expressway, Minoh Tunnel -

Kenshiro NANBA Chief
Shin-Meishin Osaka North Construction Office, Kansai Regional Branch, West Nippon Expressway Company Limited

The Shin-Meishin Expressway links mega cities in the west in Japan, Nagoya with Kobe via Osaka. The Minoh Tunnel is located on the expressway in the northern part of Osaka Prefecture. The total length is approximately 5 km with two lanes each on the inbound and outbound lanes. The tunnel crosses the Katsuoji River at a point located approximately 1 km from its eastern entrance with an overburden of approximately 20 m. The area of the Katsuoji River is located in the vicinity of Minoh Quasi-National Park, an area with an abundant natural and water environment that is also actively used as a source of water for agricultural purposes by local residents.

Basic measures to preserve the water environment

It was concerned that tunnel excavation might have a negative impact on the water environment in the vicinity of the Katsuoji River. The following measures were taken in order to alleviate such concerns.

(i) Adoption of lining for a waterproof structure (WT): WT was adopted for the area directly below the Katsuoji River and the surrounding area with a high concentration of fault fracture zones. The effect of this measure was confirmed through a three-dimensional seepage analysis that used actual ground parameters from before and during construction.

(ii) Diversion of Katsuoji River: river water was diverted in the section where the tunnel crosses the river using artificial waterways and water pipes.

(iii) Return of tunnel water inflow: in preparation for possible impact on water utilization, a small-section tunnel and vertical shaft were built that could return tunnel water inflow even during construction.

(iv) Monitoring groundwater during construction: in order to collect information on the hydrological characteristics of the area ahead of the tunnel face, ultra-long boring (Photo 1), long boring, and drilling surveys were conducted separately for all routes. At the same time, the hydrological state was monitored in order to grasp the impact on the water environment in real time, thus enabling precise countermeasures to be proposed swiftly in the event of possible impact, enabling rational construction.

Method to recover groundwater after WT (water-tight) construction

Some of the factors that complicate groundwater recovery are leakage from the lining and flow of groundwater in the longitudinal direction of the tunnel.

(i) Measures to deal with leakage from the lining (It is essential to build leak-free WT, and, in the event that leakage occurs, to cut it off in a precise and appropriate manner.)

• In order to prevent breakage of waterproof sheets, the rock bolt heads were entirely covered with shotcrete. Next, the shotcrete surface was scraped and smoothed (Photo 2).

• The waterproof sheets in the box-out sections for emergency facilities are normally welded manually, so the tunnel face was widened in order to enable automatic welding.

• Reinforcing bars are placed in the entire circumference of the tunnel, so middle-performance concrete with high self-filling properties was used to attain a dense concrete structure.

• In preparation for possible leakage from the lining, a water barrier system and a repair system that can be used to easily cut off water were adopted. These systems utilize urethane with long-term durability as grout to cut off water only in areas where leakage has occurred.

(ii) Prevention of flow of groundwater in the longitudinal direction of the tunnel

• The WT edge is located in ground with low water permeability (permeability coefficient below 2.7×10^-7 (m/sec) for 1D (approximately 12 m)). Fan curtain grouting using ultrafine particle cement was applied in preparation for possible loosening of ground due to excavation.

• In order to prevent occurrence of gaps and voids that are likely to appear in the crown of the lining, contact grouting was applied using low shrinkage cement.

• After the installation of waterproof sheets on the entire circumference of the tunnel, temporary drain pipes were installed to prevent pressure on the sheets caused by recovery of the water level. After placement of concrete, shrinkage-compensating grout was applied as blocking measure.

As a result of the various measures summarized above, the project had no significant impact on the groundwater environment.
Construction of Four Large-diameter Sharply-curved Shield Tunnels
- Metropolitan Expressway Yokohama Circular Northern Route, Baba Interchange -

Naofumi SOEIMA • Deputy Manager
Design Division, Kanagawa Construction Bureau, Metropolitan Expressway Co., Ltd

The Yokohama Circular Northern Route is the northern section of the Ring Expressway, which forms the backbone of the transportation network of Yokohama City. It is a limited expressway with a total length of 8.2 km (tunnel section length is 5.9 km), which connects the Daisan Keihin Line and the Yokohama-Haneda Airport Line. The Baba Interchange will be built approximately halfway along the route of the expressway. The ramps will be built as four tunnels, using the shield tunnel construction method.

Characteristics of construction

Each of the tunnels for the four ramps will be built with the minimum required diameter, taking into account the road alignment as well as the inner space conditions dictated by clearance limits and ventilation facilities. For this reason, the tunnels for each ramp will be built with different diameters, and the external diameter of the shield will range from φ10.1 m to φ11.1 m (Fig. 1).

The four ramps will have a steep longitudinal slope of 7%, and in both Ramp B and Ramp C there will be sharply curved sections with a minimum curve radius of 50 m. Moreover, excavation for Ramp B will start at a location with small overburden of 1.3 m. Overall, the project requires an advanced construction management (Photo 1).

An examination of the geological characteristics with Ramp B as the case study shows that the approximately 450 m-long zone of excavation is composed of diluvial clayey soil and sandy soil, alluvial clayey soil containing humus, Kazusa layer mudstone, as well as sand and sandstone, so excavation involved significant variance in geological components (Fig. 2).

Furthermore, in this construction project, the shield machines in three of the tunnels (Ramp A, Ramp C, and Ramp D) start from one starting shaft, so in the construction of two of the three tunnels it will be necessary to take into account the impact of subsequent tunneling for adjacent construction. Also, the shield machine of Ramp C will cross an area at a depth of approximately 5 m directly beneath the starting portal of the tunnel for Ramp B. These factors indicate that the project will have crowded spatial restraints, so the design takes into consideration the mutual effects among adjacent tunnels.

The arrival section of the ramp tunnels is where they connect with the main line tunnel. The four ramp tunnels will connect underground with the main shield tunnel, which is built using the same shield method (Fig. 3).

Status of construction

In February 2016, of the four ramp tunnels, excavation of the Ramp B shield tunnel was able to be completed, overcoming various issues, such as the small overburden, sharp curves, and steep slope. The remaining three ramp tunnels will be constructed taking advantage of the knowledge and experience gained through the construction of Ramp B.

An examination of the geological characteristics with Ramp B as the case study shows that the approximately 450 m-long zone of excavation is composed of diluvial clayey soil and sandy soil, alluvial clayey soil containing humus, Kazusa layer mudstone, as well as sand and sandstone, so excavation involved significant variance in geological components (Fig. 2).

Furthermore, in this construction project, the shield machines in three of the tunnels (Ramp A, Ramp C, and Ramp D) start from one starting shaft, so in the construction of two of the three tunnels it will be necessary to take into account the impact of subsequent tunneling for adjacent construction. Also, the shield machine of Ramp C will cross an area at a depth of approximately 5 m directly beneath the starting portal of the tunnel for Ramp B. These factors indicate that the project will have crowded spatial restraints, so the design takes into consideration the mutual effects among adjacent tunnels.

The arrival section of the ramp tunnels is where they connect with the main line tunnel. The four ramp tunnels will connect underground with the main shield tunnel, which is built using the same shield method (Fig. 3).
The Shimoda Zuido, -‘zuido’ means tunnel in Japanese-, on National Highway No. 389 is a road tunnel with 49 m long, in southwestern Kyushu island. The tunnel, after about 75 years of service since its completion in 1936, was exceedingly deteriorated. Moreover, the tunnel was very small in width to an extent that two vehicles could not pass each other, and in a need to be enlarged.

As a work condition, the traffic of this road could not be totally closed, because there was no detour in the neighborhood. Therefore, the tunnel was refurbished by in-service enlargement method, which widened the tunnel’s cross section, while keeping traffic service for ordinary vehicles. The work was started in March 2012.

Excavation methods and safety measures

In the surrounding topography, a mountain area of an altitude of 400 m or less protrudes into the sea, and the road runs along the coast at the foot of the mountain.

Blasting excavation was used, considering that the ground in-situ was composed of good hard rock belonging to the sedimentary rock of sandstone, conglomerate and rhyolite of Late Cretaceous period. For the blasting section, a gate-shaped steel frame, called ‘protector system,’ was placed to provide safety to traffic vehicles.

On the perimeters of the tunnel at both portals, some places on the mortar-lined slopes were observed to be aged and deteriorated. There was a concern for that section that pieces of rock mass might fall off and the mortar spill, due to blasting vibrations. Therefore, safety measures to protect the slopes were taken in advance with wire ropes and anchoring systems. Moreover, in order to monitor slope behavior due to vibrations of blasting and earthquakes, a warning system was introduced for safety management which is designed to issue a warning when the earth produces a certain level of displacement.

Construction method

The construction method for this tunnel was as follows. In the first step, a protector system was installed inside the existing tunnel, and air mortar was injected and filled into the perimeter space between the walls of protector and existing tunnel. Under this condition, the ground in-situ on the coastal side was excavated by blasting. Following the completion of excavation on the coastal side, general traffic was shifted to the lane on the coastal side.

The next step was removal of the protector system by excavating the mountain side with a large oil-pressure type demolition equipment. After completion, the inverted arch structure was installed there. Then traffic was shifted again to the mountain side to install also the coastal inverted arch concrete.

Finally, the walls of the tunnel were lined with cast-in-place concrete where general traffic was safeguarded under the tunnel lining form.

It was necessary to exert careful attention to the blasting process. With almost no adverse effect on the surroundings, the project was able to be finished within about one month, thanks to previous protective measures to minimize the impact of noise and vibration.

The project imposed a severe site condition for enlarging the work maximizing use of existing infrastructural stock. The project was able to be completed successfully in January 2014, approximately 2 years from the start.
Technology of Controlling Damage in Tunnels Subjected to a Large Seismic Motion, Developed in the Shield Tunnel on the Yamatogawa Route of Hanshin Expressway

Tsunomia NIINA Assistant Manager, Sakai Construction Department, Construction and Renewal Management Headquarters, Hanshin Expressway Company Limited
Keichi TAMADA Group Leader; Shield Group, Underground Space Design Department, Civil Engineering Headquarters, Kajima Corporation

Introduction
In the southern district of Osaka, Yamatogawa Route of Hanshin Expressway is currently being developed by three parties, Osaka Prefecture and Sakai City Governments and the Hanshin Expressway Company, as a part forming the ring road for Osaka Urban Redevelopment (See Fig. 1). The Yamatogawa Route is about 9.7 km long, and for most of the route underground structures have been built using tunneling by the Shield Method or by the Cut and Cover Method. This report summarizes techniques for controlling damage which were adopted in the shield tunneling in the western section.

Summary of a new seismic design
The new seismic techniques for this project were used for parallel shield tunnels of 12.230 m in external diameter and 2.0 km in length. These twin shield tunnels were extremely close to each other, separated by only about one meter (0.08 D in external diameter of the tunnel) (Fig. 2).

The seismic design for the Yamatogawa route provides three levels of seismic motion; level 1 is a seismic motion of a high probability which is expected to occur in the service life. Level 2 is a seismic motion of high intensity. The largest level is the one represented with a force which may possibly act in the Uemachi fault crossing the design section. Considering the maximum level of seismic motion and an extremely low probability in the service life, the required seismic performance level was evaluated.

By assuming that the maximum level of seismic motion occurs in the axial direction, the model thus created assumed that compression force is predominant in the axial direction of the tunnel. To cope with this issue, we developed and used a steel segment which by itself was deformable for damage control in the tunnel where compression force prevails, while controlling deforming forces to within the limit required.

Steel segment for damage control
The vertical rib of the segment is designed to have a resistance larger than the axial force under seismic motion larger than Level 2, and to yield or buckle under the largest seismic motion scenario. With reference to compression deformation due to buckling, the stress working in the axial direction of the tunnel was able to be controlled within the minimum allowance. Additionally, axial force-transferring components were installed with appropriate strength to prevent unnecessary deformation of the segment. The structure of the segment (concept of a compression deformation) is shown in Figure 3.

Figure 4 shows the view of the tunnel under construction. We confirmed that the segment that can control damage developed for this tunneling project is able to provide seismic protection with excellent durability, maintenance and economy while achieving required safety against seismic motions at each level.
The Tokyo Port Tunnel is on a national highway that runs parallel with the Bay Shore route of the Metropolitan Expressway. EPB type machine with an outer diameter of 12.2 m was used to bore a 1470-meter route, including a construction segment under the seafloor.

Characteristics of the tunneling project

1) Starting and arrival on the ground surface

Generally, in tunneling with TBM, two shafts are provided: one at the starting portal and the other at the arrival portal with a certain overburden. However, this tunnel was bored from and to the ground surface, towing all the carriages at each portal area.

2) "Box dump method"

Given the conditions of the project, the tunneling route was planned with a shallow overburden. Therefore, the tunnel was required to resist upward force of buoyancy by utilizing the weight of machine itself. Immediately after advance of the machine, precast concrete components were placed as an additional weight against buoyancy to keep the tunnel stable.

Unlike the conventional placement of cast-in slab concrete, this method made it possible to tunnel faster than usual thanks to the weighted roadbed slabs transported by dump trucks behind the excavating face.

3) Proximity construction

The distance to the existing Bay Shore route was about 17 m. Therefore, a measuring instrument was installed in the immersed tube of the route to automatically monitor the impact from the shield tunneling.

Technological achievement

During the assigned construction period of about 10 months, there was no significant trouble requiring excavation to be stopped, with a maximum excavation rate of 338 m per month. The maximum vertical displacement was 4 mm, which was negligible, producing no impact from the buoyancy of segments. We were able to complete the tunnel safely through careful excavation, and to manage the tunneling without producing any impact or special displacement to the adjacent immersed tube.
Enlargement of a Shield Tunnel without Interrupting Traffic
- Ohashi Shield Tunnel, Central Circular Route of the Metropolitan Expressway-

Daisuke MIYAMA ▶ Deputy Manager, Engineering Division, Metropolitan Expressway Company Limited

The Tokyo Metropolitan Expressway Central Circular Route, forming the innermost ring of three circular routes, is 38 km long. The last segment that is 9.4 km long (on the Shinagawa Line) was opened in March 2015. As a result, the tunnel section of 18.2 km has become the longest road tunnel in Japan. The tunneling work involved a sophisticated structure without precedent, which consisted of enlarging the tunnel cross-section of the Ohashi Shield Tunnel where the branching-off and merging to and from the Shinagawa Line were to be provided at two points on the Central Circular Route (Fig. 1).

Shield tunneling of the Ohashi Tunnel

This project was to construct two tunnels of about 430 m which are laid in a vertical configuration, with a segment ring of 12.65 m in diameter.

In the configuration of two tunnels, the maximum overburden was 43.8 m, the minimum separation between them 1.5 m, and the minimum curve radius 123 m. By using the shaft as a place where the shield machine moves and makes a U-turn, it was possible for a single shield machine to excavate two tunnels.

The segment ring on the enlargement side was designed as an extended structure to make the RC frame and segments monolithic, by placing a skin plate on the inner side which was constructed on the reinforcing bars that had been laid previously (Fig. 2).

With these arrangements, it was possible to enlarge the cross-section to a desired size, without restricting the service of the traffic lanes in operation.

Cutting and enlargement of the Ohashi Shield Tunnel

There were two types of places needing cutting and enlargement; the one was on the upper tunnel, extending 40 m (Fig. 1, Section A-A), and the other 250 m long on the both upper and lower tunnels (Fig. 1, Section B-B).

The tunnel’s frame was formed through cutting and enlargement using the following steps. First, the site was excavated by a cut and cover method (partially, by NATM), and the desired frame was completed by an inverted lining method. After the cross-section of the tunnel was enlarged, the segment ring, forming part of the section enlarged, was removed by gas cutting. During this process, a protection panel was provided between the in-service the smoke and cutting debris might be discharged from the working site to the road lanes.

The upper section of enlargement was of an opening and closing type for fear that the work there might exert an adverse effect on the ventilation of the road tunnel in service.

Steps of cutting start, construction of frame structure, cutting and by using a 2D FEM sequential analysis to predict the behavior. At each step of construction, a reference measurement value was provided to manage construction. With all these means, we were able to complete the project safely.

Enlargement project of the Ohashi Shield Tunnel

[Insert Diagram]

Fig. 1 Location of the project

Photo 1 Placement of the protector

Road side

Photo 2 Segment cutting (work side)

Photo 3 Completion
Introduction
An urgent issue for us today in the area of construction and maintenance of a reliable social infrastructure is prolongation of service life of civil engineering structures. For tunnels, various new technologies have been developed to prolong the service life of lining concrete. This article discusses a new method named Telescopic Centre (hereinafter “special formwork”) with a special view to accelerating the initial curing of lining concrete.

Overview of the special formwork
The special formwork system (twin arch form) used for this project is composed of two formworks (arch forms) and a gantry platform. One form is put in place for concrete placement and curing, while the other is moved to the next segment for the same operation. Thus, concrete placement and curing can alternate, shifting places every two days, and is proven effective for placement of lining because sufficient time (period of curing of concrete in the form) can be obtained by maintaining the form in place (Fig. 1).

Effects of initial curing with the special formwork
The following three benefits of the initial curing were verified:
1) Added supporting force to resist the dead load of the arch: To reduce the tensile strain working along the inside periphery of the crown at the time of removing the form.
2) Heat insulation effect: To mitigate the thermal strain that may develop due to temperature difference from inside the concrete when the lining surface is cooled rapidly.
3) Moisturizing effect: To reduce contraction strain, which may be produced when the lining surface is dried initially. With these advantages, the initial cracking rate is approximately one-fifth compared to the conventional method, as shown in the lining surface given by the Torrent Method is about one-tenth compared with that of the conventional lining method. Thus, it is validated that the use of special formwork contributes to quality improvement of the concrete lining surface and reduction of initial cracking rates. Consequently, the twin arch form system is considered an effective means to prolong the life of lining concrete considering the following points: control of concrete degradation resulting from water penetration (condensed water) and control of crack development in the future.

Conclusion
By increasing the number of arch frameworks in simultaneous use up to three or four, this system will enable longer curing time for good concrete quality (allocation of a longer time for maintaining the formwork in place) as well as placing concrete at a higher rate (shortening of construction periods). It is extremely flexible and able to be adapted to the needs of various sites.
Prolonging Service Life of Sewer Pipes by the SPR Method for Various Cross Sections

Satoshi INATA
Deputy Director, Design Coordination Section, Construction Division, Bureau of Sewerage, Tokyo Metropolitan Government

Background
In the 23 wards of Tokyo, construction of the sewerage system started about 130 years ago, and currently has a total length of about 16,000 km. As a result of its long history, degradation and aging have been progressing, primarily in the sewerage facilities built in the early years, with 1,800 km of pipelines exceeding the legal service life of 50 years. Furthermore, the length exceeding the service life is expected to increase by about 8,900 km in the next 20 years.

We have to address the urgent task for aged pipelines (sewer reconstruction project), however, the project is not easy in urban areas. First of all, since the sewer runs mostly under roads where various structures are embedded, the work, if performed with the Cut & Cover Method, will exert a significant impact on traffic and residents’ lives along the roads. Moreover, there is economic activity 24 hours a day, so halting sewerage service for a long time for construction is impossible. Especially, restoration and reconstruction of large-diameter sewer pipes called trunk sewers by the Cut & Cover Method would be extremely difficult, because the project would be enormous.

To cope with these problems, the Bureau of Sewerage of the Tokyo Metropolitan Government developed a Spiral Wound Trenchless Pipeline Renewal (SPR) method in cooperation with a private company starting in the mid 80’s when sewerage coverage had reached almost 100%. This new method does not use the Cut & Cover Method and enables work to continue without stopping sewerage service. Initially the method was intended for sewer pipes with small diameters, and consequently we were able to applicable to sewer pipes of non-circular section with large diameters, that is, a SPR method able to cope with different cross sections.

Technology overview
The sewer pipe renewal method can be used for all cross-sectional shapes, rectangular, horseshoe and oval.

The construction steps are as follows. First, from the PVC (profile) reel provided on the ground surface, the profile material is fed into the existing sewer, and then the self-propelling duct-making machine is used to line the duct with the profile and to form a new spiral pipe in a continuum in the almost same geometry as the existing duct (needling restoration) (Fig. 1). In the next step, special mortar is filled between the existing pipe and the newly formed pipe to consolidate the two as a composite unit (Photos 1 and 2).

The SPR composite pipe thus formed makes it possible for aged and deteriorated ducts suffering cracking and corrosion to be restored to a level equivalent to or better than a new pipe. More economical and superior both in work period and costs than the Cut & Cover Method, the SPR method has proven to be applicable in cases where wastewater is allowed to flow down, as far as the water rate is a certain level or less.

Future issues and approaches
This SPR method, intended for reconstruction of non-circular sewer pipes in service, has been widely employed for sewer pipes currently in service in Japan. Until the end of FY 2014, 987 km of sewer pipes had been satisfactorily restored nationwide including 584 km in the 23 wards of Tokyo. Also, in 13 countries including the US and Singapore we have restored about 111 km of sewers.

In the future, we want to develop innovative approaches and techniques required to solve various issues arising out of sewerage systems and facility obsolescence in the Tokyo area.
The Pahang-Selangor Project is the construction of a long raw water transfer tunnel to link the states of Pahang and Selangor in Malaysia. The tunnel is 44.6 km long (Fig. 1) and 5.2 m in diameter, one of the largest infrastructure projects in Asia. The project, when completed, will have the capacity to relieve the shortage of water for the daily needs of residents as well as industrial needs in Kuala Lumpur and, in the future, in the surrounding areas (water supply capacity of 1.89 million m³/day).

During the process of tunneling, we encountered heavy groundwater ingress of 10 m³/min, rock bursts, hot rocks, and in some areas, were forced to advance through large fault zones.

Geology
The geology of the tunnel was mainly composed of hard granite of a uniaxial compressive strength of 150 N/mm² to 200 N/mm², but included 6 major fault zones and 21 lineaments. The maximum overburden was 1,246 m, and the overburden exceeding a depth of 1,000 m extended 5 km. Hot rocks exceeding a temperature of 50 deg. C were found in the high overburden depth of 5 km and the maximum temperature of the rocks was 55 deg. C.

High performance Tunnel Boring Machine
We employed the Main Beam Tunnel Boring Machine (TBM) for this project. The TBM for this project was equipped with a capacity 30% stronger in thrust force and a larger cutter head torque than similar past projects (Photo 1). The thrust force and cutter head torque required of TBM was larger than the resistance force of the rock and soil in the TBM’s construction site and its surroundings. A probe drilling machine was installed on the TBM, for probe drilling and drilling drain holes.

Fiber-mortar spraying system
The spraying of fiber mortar at an earlier stage may offer a very effective support for poor geology, which is prone to cause ground collapses after the passing of the TBM cutter head. This was the first project in which the fiber mortar spraying system made in Japan was used at an overseas construction site. The characteristics of the fiber mortar and the spraying system are as follows.
- Near-zero rebound
- Good bonding
- Development of a high early strength

Spraying system:
- Being compactly arranged (Photo 2)

With the fiber mortar-spraying system, we could successfully overcome the safety difficulties arising from the presence of large fault zones. This system also proved to be effective preventing rock pieces flying out in the rock burst area where such risks existed.

Tunneling underground with significant ground water ingress
The TBM-1 section was affected frequently by large ground water ingress. The TBM-1 tunnel section was excavated downward (gradient 1/1900). Therefore, it was exposed to the danger that the TBM machine could be submerged. A topographic map representing possible water ingress was drawn up in order to provide adequate dewatering facilities at relevant places (their pumping capacities, although originally 10 m³/min, were changed to a range of 20 m³/min → 31.5 m³/min); by doing so, we were able to avoid heavy ground water ingress. Even if a 10 m³/min ingress occurred at the cutting face by TBM, the tunneling machine could continue excavation, because the site was drained sufficiently by using a pump with a large capacity of 55 kW.

Tunnel construction in an underground environment at high temperatures
In the TBM-2 section, there was an area in the tunnel where temperature rose to 43 deg. C due to hot rocks. In this environment, continuing the excavation was very difficult. To solve this problem, we used a series of cooling systems as follows:
- Water-cooled air-cooling system for TBM machines
- Passenger car with water-cooled air conditioner
- Water-cooling system installed on the ground surface.
Introduction

In recent years, the metropolitan area of Tokyo has experienced flood damage during torrential rains, especially in some parts where the existing sewer ducts had insufficient discharge capacity. The Bureau of Sewerage of the Tokyo Metropolitan Government has been faced with the urgent necessity of taking actions to prevent such flooding damage. The system in this area is a combined sewer type which, when the rain exceeds a certain level, allows rainwater combined with wastewater to flow into the moats of the Imperial Palace and the Tsukiji River, which causes further deterioration of water quality.

To alleviate this problem, the trunk sewer duct to the 2nd Tameike Sewer Trunk Line was planned, in order to minimize flooding damage and improve water quality.

Summary

The 2nd Tameike Sewer Trunk Line is a tunnel with a total length of 4,512 m, which is to be built at great depths of approximately 40 m underground. The tunnel is composed of an upstream segment (when completed, 6,500 mm in inner diameter × 1,995 m in length) and a downstream segment (8,000 mm in inner diameter × 2,517 m in length) (Fig. 1).

The project is intended to connect, through artificially frozen geology, a new underground downstream duct with the in-service trunk duct on upstream side.

There was a fear that during the boring, the shield machine might warp, causing the surrounding frozen earth to be separated from the shield machine. To alleviate this fear, we conducted a deformation analysis to reduce the displacement of the shield tunnel to as close to zero as possible, and at the same time, implemented measures to prevent deformation by determining the area to be frozen.

Construction conditions

The place where the upstream and downstream segments were to be joined was located just under a subway station, making it difficult to build a shaft by the cut and cover method to connect the two segments. The in-situ overburden was approximately 40 meters, and in addition, the project was faced with the difficulty to connect the two segments underground under high water pressure of 0.4 MPa.

Preliminary study and construction control

For connecting the two ducts, we decided to use a ground freezing technology which has excellent capability to stop water flow, as well as high strength and integrity. The shield machine, when operating at great depths and under high water pressure, involves the risk that the skin plates of the shield machine may deform suddenly and cause the gap between the machine and the frozen earth. On the other hand, when the frozen earth surface is warmed and melts, ground water may gush inside the tunnel. For these reasons, we took the three actions which follow:

1. To prevent the skin plate from separating from the frozen earth, deformation analysis was conducted. From the results thereof, a measure to control deformation (providing supports inside the shield machine) was put in place to minimize the convergence of the shield machine.
2. Implementation of strict temperature control to prevent melting of frozen earth.
3. A water storage reservoir and emergency power generator were installed in preparation for water cut-off and power failure during the construction, and temporary walls were installed to prevent secondary disasters. Emergency evacuation drills were conducted repeatedly.

Conclusion

Generally, two shield ducts are connected via a shaft especially provided for this purpose. However, in the central area of a large city, it has become difficult to acquire shaft sites as years pass by. The project was planned not only at a location immediately under the subway station of vital importance, but also located great depths underground and under high water pressure, as well in a severe construction environment involving a lot of embedded facilities.

Should an accident occur, it would have a significant impact on city activities. For this project, with cooperation of the project owner and contractor, we adopted the measure of controlling deformation, based upon the deformation analysis, and by establishing an optimal freezing zone to prevent the shield machine from deforming, we were able to complete the project safely.
This paper presents an example of construction of a utility tunnel in Nagoya City, Aichi Prefecture, in which Class I Specified Toxic Substances (also known as volatile organic compounds (VOCs))* caused soil contamination (hereinafter referred to as “VOCs soil contamination”), and the decontamination treatment at the shield face.

Under the Mild Fenton Method, hydrogen peroxide and a biodegradable catalyst are injected into the tunnel face and screw in the course of excavation, and TCE is treated in-situ by promptly degrading it into carbon dioxide, water, and chloride ions, which are non-toxic. By adopting this method, it was possible to keep under control the impact on the ground and the dispersal of VOCs during transportation on the belt conveyor inside the shield and at the sediment discharge plant, as well as the impact on the environment of the surrounding area.

Figure 1 displays an overview of the decontamination measures. The hydrogen peroxide and biodegradable catalyst, which are used as decontamination agents in the Mild Fenton Method, are stored in an aboveground plant and are transported via pipes to the shaft below, where they are temporarily stored in tanks placed on platform trucks inside the shaft. The tanks are then transported by a battery locomotive to the shield device trailing carriage and are injected using pumps into the excavation face and the secondary screw.

Figure 2 shows the decontamination-related construction facilities inside the shaft. The hydrogen peroxide and biodegradable catalyst were injected into the excavation face and the screw using injection pumps installed on the trailing carriage.

We took and analyzed samples of the muck discharged on the belt conveyor during excavation. The results demonstrated that all analyzed values were lower than the decontamination control values, and the impact on the work environment and the environment of the area surrounding the worksite was kept under control in the process of excavation.

*Solutions to Deal with Soil Contamination in Construction of the Narumi Utility Tunnel (Shield)

Kazuyoshi TANAKA
Deputy Chief
Aichi National Highway Office, Chubu Regional Bureau
Ministry of Land, Infrastructure, Transport and Tourism

17

Under the Mild Fenton Method, hydrogen peroxide and a biodegradable catalyst are injected into the tunnel face and screw in the course of excavation, and TCE is treated in-situ by promptly degrading it into carbon dioxide, water, and chloride ions, which are non-toxic. By adopting this method, it was possible to keep under control the impact on the ground and the dispersal of VOCs during transportation on the belt conveyor inside the shield and at the sediment discharge plant, as well as the impact on the environment of the surrounding area.

Figure 1 displays an overview of the decontamination measures. The hydrogen peroxide and biodegradable catalyst, which are used as decontamination agents in the Mild Fenton Method, are stored in an aboveground plant and are transported via pipes to the shaft below, where they are temporarily stored in tanks placed on platform trucks inside the shaft. The tanks are then transported by a battery locomotive to the shield device trailing carriage and are injected using pumps into the excavation face and the secondary screw.

Figure 2 shows the decontamination-related construction facilities inside the shaft. The hydrogen peroxide and biodegradable catalyst were injected into the excavation face and the screw using injection pumps installed on the trailing carriage.

We took and analyzed samples of the muck discharged on the belt conveyor during excavation. The results demonstrated that all analyzed values were lower than the decontamination control values, and the impact on the work environment and the environment of the area surrounding the worksite was kept under control in the process of excavation.

*Solutions to Deal with Soil Contamination in Construction of the Narumi Utility Tunnel (Shield)

Kazuyoshi TANAKA
Deputy Chief
Aichi National Highway Office, Chubu Regional Bureau
Ministry of Land, Infrastructure, Transport and Tourism

17

Under the Mild Fenton Method, hydrogen peroxide and a biodegradable catalyst are injected into the tunnel face and screw in the course of excavation, and TCE is treated in-situ by promptly degrading it into carbon dioxide, water, and chloride ions, which are non-toxic. By adopting this method, it was possible to keep under control the impact on the ground and the dispersal of VOCs during transportation on the belt conveyor inside the shield and at the sediment discharge plant, as well as the impact on the environment of the surrounding area.

Figure 1 displays an overview of the decontamination measures. The hydrogen peroxide and biodegradable catalyst, which are used as decontamination agents in the Mild Fenton Method, are stored in an aboveground plant and are transported via pipes to the shaft below, where they are temporarily stored in tanks placed on platform trucks inside the shaft. The tanks are then transported by a battery locomotive to the shield device trailing carriage and are injected using pumps into the excavation face and the secondary screw.

Figure 2 shows the decontamination-related construction facilities inside the shaft. The hydrogen peroxide and biodegradable catalyst were injected into the excavation face and the screw using injection pumps installed on the trailing carriage.

We took and analyzed samples of the muck discharged on the belt conveyor during excavation. The results demonstrated that all analyzed values were lower than the decontamination control values, and the impact on the work environment and the environment of the area surrounding the worksite was kept under control in the process of excavation.

*Solutions to Deal with Soil Contamination in Construction of the Narumi Utility Tunnel (Shield)

Kazuyoshi TANAKA
Deputy Chief
Aichi National Highway Office, Chubu Regional Bureau
Ministry of Land, Infrastructure, Transport and Tourism

17

Under the Mild Fenton Method, hydrogen peroxide and a biodegradable catalyst are injected into the tunnel face and screw in the course of excavation, and TCE is treated in-situ by promptly degrading it into carbon dioxide, water, and chloride ions, which are non-toxic. By adopting this method, it was possible to keep under control the impact on the ground and the dispersal of VOCs during transportation on the belt conveyor inside the shield and at the sediment discharge plant, as well as the impact on the environment of the surrounding area.

Figure 1 displays an overview of the decontamination measures. The hydrogen peroxide and biodegradable catalyst, which are used as decontamination agents in the Mild Fenton Method, are stored in an aboveground plant and are transported via pipes to the shaft below, where they are temporarily stored in tanks placed on platform trucks inside the shaft. The tanks are then transported by a battery locomotive to the shield device trailing carriage and are injected using pumps into the excavation face and the secondary screw.

Figure 2 shows the decontamination-related construction facilities inside the shaft. The hydrogen peroxide and biodegradable catalyst were injected into the excavation face and the screw using injection pumps installed on the trailing carriage.

We took and analyzed samples of the muck discharged on the belt conveyor during excavation. The results demonstrated that all analyzed values were lower than the decontamination control values, and the impact on the work environment and the environment of the area surrounding the worksite was kept under control in the process of excavation.

*Solutions to Deal with Soil Contamination in Construction of the Narumi Utility Tunnel (Shield)

Kazuyoshi TANAKA
Deputy Chief
Aichi National Highway Office, Chubu Regional Bureau
Ministry of Land, Infrastructure, Transport and Tourism

17

Under the Mild Fenton Method, hydrogen peroxide and a biodegradable catalyst are injected into the tunnel face and screw in the course of excavation, and TCE is treated in-situ by promptly degrading it into carbon dioxide, water, and chloride ions, which are non-toxic. By adopting this method, it was possible to keep under control the impact on the ground and the dispersal of VOCs during transportation on the belt conveyor inside the shield and at the sediment discharge plant, as well as the impact on the environment of the surrounding area.

Figure 1 displays an overview of the decontamination measures. The hydrogen peroxide and biodegradable catalyst, which are used as decontamination agents in the Mild Fenton Method, are stored in an aboveground plant and are transported via pipes to the shaft below, where they are temporarily stored in tanks placed on platform trucks inside the shaft. The tanks are then transported by a battery locomotive to the shield device trailing carriage and are injected using pumps into the excavation face and the secondary screw.

Figure 2 shows the decontamination-related construction facilities inside the shaft. The hydrogen peroxide and biodegradable catalyst were injected into the excavation face and the screw using injection pumps installed on the trailing carriage.

We took and analyzed samples of the muck discharged on the belt conveyor during excavation. The results demonstrated that all analyzed values were lower than the decontamination control values, and the impact on the work environment and the environment of the area surrounding the worksite was kept under control in the process of excavation.

*Solutions to Deal with Soil Contamination in Construction of the Narumi Utility Tunnel (Shield)

Kazuyoshi TANAKA
Deputy Chief
Aichi National Highway Office, Chubu Regional Bureau
Ministry of Land, Infrastructure, Transport and Tourism

17

Under the Mild Fenton Method, hydrogen peroxide and a biodegradable catalyst are injected into the tunnel face and screw in the course of excavation, and TCE is treated in-situ by promptly degrading it into carbon dioxide, water, and chloride ions, which are non-toxic. By adopting this method, it was possible to keep under control the impact on the ground and the dispersal of VOCs during transportation on the belt conveyor inside the shield and at the sediment discharge plant, as well as the impact on the environment of the surrounding area.

Figure 1 displays an overview of the decontamination measures. The hydrogen peroxide and biodegradable catalyst, which are used as decontamination agents in the Mild Fenton Method, are stored in an aboveground plant and are transported via pipes to the shaft below, where they are temporarily stored in tanks placed on platform trucks inside the shaft. The tanks are then transported by a battery locomotive to the shield device trailing carriage and are injected using pumps into the excavation face and the secondary screw.

Figure 2 shows the decontamination-related construction facilities inside the shaft. The hydrogen peroxide and biodegradable catalyst were injected into the excavation face and the screw using injection pumps installed on the trailing carriage.

We took and analyzed samples of the muck discharged on the belt conveyor during excavation. The results demonstrated that all analyzed values were lower than the decontamination control values, and the impact on the work environment and the environment of the area surrounding the worksite was kept under control in the process of excavation.
Shaft and West Access Shaft were excavated using a roadheader in order to prevent damages on the excavated wall during shaft sinking. The shaft was excavated with a cyclic procedure and auxiliary supports were also installed. This is the first time these methods for shaft sinking in soft sedimentary rock have been employed in the world. Figure 2 shows a photograph of the excavation apparatus. However, the East Access Shaft was excavated by drill-and-blast method.

Observational method for shaft sinking using a “3D geological structure/construction data visualization system”

In the Horonobe URL project, a “3D geological structure/ construction data visualization system” has been employed to facilitate observational method because no studies have been found regarding the construction of underground facilities at depths greater than 300 m in sedimentary formations. Using this system, fracture mapping conducted at each excavation depth, measurement data, construction data and prediction analysis results are visualized and integrated comprehensively as the excavation proceeded. The system assisted clearer understanding of the behavior of the rock mass and the support, consequently improving construction safety.

Figure 3 shows an example of the application of the system to shaft excavation below a depth of 250 m. A potentially hazardous and the grouting operation. The lining interval in the fault zone was then revised on the basis of 3D examination. The excavation was successfully completed to a depth of 350 m while ensuring stability of rock mass around the shafts and preventing failure of the support system.

Through the project, it has been confirmed that the system contributes to a successful construction by the observational method in shaft excavation.
Rapid Construction Using Long-hole Blasting in a Small-section Tunnel

Masatake OHASHI Professor, Institute for Cosmic Ray Research, The University of Tokyo

Shinichi SAITO Deputy Manager, Facilities Construction Project Group, Facilities Department, The University of Tokyo

Noritsuki HANADA Director, Kamioka Tunnel Construction Office, Kajima Corporation

The project for construction of Large-scale Cryogenic Gravitational Wave Telescope (LCGT) facilities of the University of Tokyo (Institute for Cosmic Ray Research) is a project by the University of Tokyo with the goal of creating and maintaining an experimental space and environment for the LCGT plan. Specifically, the project includes excavation of two orthogonal straight tunnels with a length of 3 km (X-arm tunnel and Y-arm tunnel) into the Kamioka Mine in Gifu Prefecture, a location that is characterized by extremely low seismic noise levels and stable temperature and humidity, and installing various gravitational wave detection instruments, such as laser interferometers (3 km × 2).

These tunnels will host experimental facilities for detection of gravitational waves, a phenomenon whose existence was predicted by Albert Einstein on the basis of his theory of general relativity. In order to put them into use for research purposes as quickly as possible, it was necessary to build two long tunnels with a total excavation length of 7,697 m (excavation area of 15 m²) within two years. The construction work involved some severe procedural restrictions, but we aimed to complete it within the designated construction period by adopting long-hole blasting in the excavation process.

Long-hole blasting is utilized frequently in Europe and the United States as the geological conditions there often feature homogenous and solid bedrock. In Japan, on the other hand, the geological conditions lack homogeneity, so there are relatively few examples of boring with long-hole blasting as compared with other countries. In this project, the tunnels had to be constructed rapidly, and for most parts the bedrock was assumed to be hard and homogenous, so we adopted long-hole blasting. Eventually, we broke the national record for excavation speed by the NATM method, achieving a rate of 359 m per month and a rate of 660 m per month in total for the two tunnels that started from a single work shaft.

In the rapid construction of a small-section tunnel with an excavation area of 15 m² (excavation width of 4 m), we placed importance on the following four points.

1) Adoption of long-hole blasting for small sections
2) Efficient mucking operations by increasing the size of equipment
3) Ventilation to maintain a good environment inside the tunnel
4) Understanding ground conditions ahead of the tunnel face through observational construction

The most important issue in the long-hole blasting in particular is how to improve the advance rate (the length of excavation for one blast / drilling length). Compared with ordinary blasting, more than twice as much blasting powder was used, but the shortening of processes achieved by faster excavation speed can sufficiently make up for high blasting powder costs.

In order to boost the advance rate at the worksite of this project, laser verification and other technologies were adopted to improve drilling precision, overbreak was reduced, and the construction was carried out through long-hole blasting (with advance length of 4.0 m per blast).
The Ipponmatsu Tunnel is a 3,200 m long, four-lane tunnel on the Nagano Expressway. It was constructed during 1990 and 1991 and put into service in March 1993. In 1996, heaving of the road surface appeared at a no-invert-concrete section due to external forces working on the tunnel and slight deformation is still continuing. To cope with this kind of deformation, the placement of an invert is generally known to be an effective measure. However, it is necessary to close road traffic for a long time to place invert concrete. To avoid such inconvenience, a new technique, “curved box-propelling system,” was developed to place invert concrete under the road in order to minimize traffic interruption. Details of this process are given below.

History of deformation in the Ipponmatsu Tunnel and measures taken

At the initial stage of the heaving, deformation was relatively small and not considered to be an urgent problem that needed to be repaired. Given the width of the tunnel, it was impossible to divide the road width into two sections to allocate half to traffic. For this reason, a new approach was needed to manage extensive repair of the road surface without closing traffic. A curved box-propelling system was thus developed for the placement of invert concrete (Fig.1).

Curved box-propelling system

The system is characterized by a twin header (Photo 1). The boring machine is a universal type and able to cope with a variety of geological conditions and widely used for soft rock excavation. Being equipped with a twin header, which is flexible to be able to move over a wide range, the excavation machine can be easily transported through the box without using special equipment. The curved box-propelling system is characterized by the following: the shell of the box is positioned in advance at the center where traffic control is difficult, then concrete is filled into the box, along the outer circumference of the box, back-filling grout is poured to form an invert (Photo 2).

Results of construction

Construction started at the end of August of 2013, just after the busy vacation season. First, the box-propelling system was introduced from the passing lane side to form the central part and to the passing lane and the concrete invert of the left side was constructed to complete the circular cross-section. As planned originally, the project was completed in about three months, by the end of November, before beginning of the snow season. During the period assigned, construction produced no convergence, settlement of lining crown and road surface, or excessive stresses signaling risk to workers. After completion, the road surface and ground around the tunnel have been observed for one year and no displacement has been recorded. Therefore, the invert thus provided was confirmed to be an effective measure for control of deformation.
When the overburden is deep and aquifers are predicted to exist ahead of a tunnel face, dewatering is essential to excavate the tunnel safely preventing sudden bursts of high-pressure water inflow. By using a new rapid non-core drilling machine for long distances (L=150 m) with a water powered down-the-hole hammer, it is possible not only to investigate the geological condition ahead of the tunnel face quickly but also to dewater in order to prevent a sudden water burst during tunnel excavation.

Rapid drilling with Water Powered Hammer

In the water powered down-the-hole hammer, the piston directly strikes the drill bit, producing an oscillating movement under pressurized water (up to 18 MPa). Since the piston directly contacts the drill bit, the loss of impact energy is small, and it is suitable for a long distance drilling.

In the case of an 8 m guide cell provided on the dedicated non-core drilling machine, the use of a 6 m drilling rod makes it possible to reduce the frequency and the time spent in the joining of drilling rods by half, compared with the conventional machine.

Mechanism how to predict geological conditions

Paying attention to the mechanical function of the water powered hammer, a new parameter has been introduced based on the impact energy. This approach enables to detect fault fracture zones and classify the ground ahead of the tunnel face.

The drilling energy required for a drilling unit length is directly proportional to the value “P (water pressure) × f (number of blows per unit drilling length)”. Thus, the value was confirmed to define DEI (Drilling Energy Index) and used to predict the geological conditions ahead of the tunnel face.
In recent years, shield tunneling projects have been required to shorten construction period, improve segment durability and seismic safety, and reduce material consumption in order to reduce environmental impact. To meet these requirements, the screw bolt (SB) joint was developed to serve as a ring joint for the segment.

Structure of the SB joint

The SB joint consists of female and male parts. The female part is composed of a ductile case, a spring, a group of eight small screw bolts, a taper ring, a seismic isolation ring, and a front cover. The male part is a threaded bolt connected with the deformed steel rod. When the quakeproof function is not required, the female coupling may be cheaper without quakeproof ring, having a monolithic structure of a taper ring and a front cover.

Various functional features of the SB joint

The SB joint is a one-touch type that makes it possible to shorten the manufacturing process by 23% compared with a conventional bolt joint. It is also economical because the manufacturing cost can be reduced by 10% compared to a conventional joint by using available products such as small bolts.

The female component contains a seismic isolation ring to prevent compressing forces, thus enabling increase of quakeproof performance in the longitudinal direction of the tunnel.

The seismic isolation ring is made of either of two materials; urethane or mechanical elastic material. On the surface of a bolt, there is a portion where a particularly large shear force applies, but this portion is designed with a larger circumference than other parts for greater shear resistance. Although the bolt used for this project is basically M24 in size, its circumferential diameter and wall thickness are partially enlarged to increase the shear strength appropriately, without changing the whole shape of the joint. Since the ductile case and its content are not connected, it is possible for the segments to be assembled more flexibly. The joint, thus designed, not only adds alignment functions that a conventional one-touch type joint does not have, but also minimizes damage to the segment, leading to greater endurance of segments.

Evaluation of the SB joint

SB joints have used in more than 30 projects in Japan, and in the access portion of the shaft as part of a railway extension project in Incheon Airport Terminal 2 in Korea. As mentioned above, the SB joint is provided with multiple functions of innovative technology, and has been used in various construction projects.

Fig. 1 Schematic diagram of the SB joint

Fig. 2 Structure of the SB joint
Invert Displacement Gauge
- Ground swelling measurement during tunnel construction -

Hideo KINASHI • Deputy General Manager
Civil Engineering Technology Division,
OBAYASHI Corporation

Atsuhi UNEDA • Chief Engineer
Civil Engineering Design Division, Kajima Corporation

In railway and road tunnels in service, incidents of ground swelling have occurred frequently, causing difficulties in maintenance. To avoid these kinds of problems during the construction of a tunnel, it is critical to watch and identify a potential heaving of the roadbed to confirm that the displacement inducing such heaving has completely settled.

Since during tunnel construction, there is a continual traffic of heavy construction machines and dump trucks, it is difficult to provide reference marks on the roadbed to measure the amounts of heaving. To resolve this problem, we have developed an invert-displacement gauge able to automatically measure ground swelling with high precision, which when used, is embedded into the roadbed to prevent the effect of operating vehicles. As illustrated in the Figure 1, the water pressure gauge set in the roadbed and a water reservoir serving as a reference are directly connected through a water-filled PVC pipe enabling measurement of the amount of ground swelling by keeping the water level in the reservoir constant. Photo 2 shows a warning with a LED light which varies in color, with the heaving level. Moreover, the instrumentation is installed in a protective pipe for repeated usage.

Up to now, we have already applied this system in three road tunnels to monitor heaving of roadbeds.

Every tunnelling project requires measurements of tunnel displacement in order to manage risks. Normally, a total station is used to measure displacements of multiple points where a reflector such as a prism or sheet target is installed. However, this survey method tends to overlook local displacement and misread the deformation mode of a tunnel because it is impossible to determine displacements at places where the reflector is not installed.

Recently, a 3D laser scanner has been utilized to measure deformation of tunnels. However, it cannot always measure the displacement of the same point because it cannot identify measuring points each time nor track displacement at specific points continuously.

Therefore, Kajima invented a methodology that identifies specific points in laser scanning data by using the image processing technology “template matching”. This can provide us with time-lapse 3D displacements of any points needed on the tunnel wall.

Through this system we can identify the overall deformation over time of the tunnel wall, guaranteeing safe excavation for the three tunnelling projects in Japan including the Kitonominon Tunnel, the Mitasaka Tunnel and the Kooroshi Tunnel.
Trend of Construction Investment in Tunnels and Underground Spaces

The total amount of construction investment in tunnels and underground spaces in Japan increased rapidly until 1995, but since 1995 it has been on the downturn due to the continuing government curbs on public investments. However, from 2011 it East Japan Earthquake, and in 2014 it tended to increase drastically again due to improvement projects of the transportation network for the coming 2020 Tokyo Olympic Games. Fig. 1 shows trends in volume of work under construction, divided according to the purposes of tunnels and underground spaces in Japan.

Fig. 2 shows the makeup of contracted amounts of different project purposes in 2014. The largest was road at 62%, followed by waterways at 10%, railways at 7% and others at 20%.

Trend of Tunneling Method

Fig. 3 shows trends in the number of tunnel construction sections by tunneling method (conventional/NATM, shield method, etc.) and changes in their proportion. The ratio of the conventional method is the highest, accounting for 30% to 60% of the total and still increasing, followed by the shield method, leveling off in the range 20% to 30%. The ratio of pipe jacking projects has dipped, accounting for 9%, and the cut-and-cover has leveled off at around 5%.

The increase of ratio of projects by the conventional method is attributable to widened range of application of this method because of technological development such as various auxiliary methods.

Fig. 4 illustrates the percentages of different construction methods and those of excavation methods. The conventional method accounts for 63% of the total, for which blasting is most frequent 60%. The shield method is 22%, which is subdivided into 26% for slurry shield and 71% for high-density slurry shield and 2% for earth pressure balanced shield.

Domestic and Overseas Tunnel Construction by Japanese Contractors

Fig. 5 shows the contract amounts of domestic overseas tunnel construction projects by JTA member contractors.
List of Members

Public Corporations, Local Authorities, Owner Companies and Associations

Central Nippon Expressway Co., Ltd.
2-18-19, Nishiki, Naka-ku, Nagoya, Aichi 460-0003
TEL: 52-222-3623
FAX: 52-232-3576
E-mail: engineering@c-nexco.jp
http://global.c-nexco.co.jp

East Japan Railway Company
2-2-2, Yoyogi, Shibuya-ku, Tokyo 151-8578
TEL: 3-5334-1288
FAX: 3-5334-1289
http://www.jreast.co.jp

East Nippon Expressway Co., Ltd.
Shin Kasumigaseki Bldg., 3-3-2, Kasumigaseki, Chiyoda-ku, Tokyo 100-8979
TEL: 3-3506-0111
http://www.e-nexco.co.jp/english/

EX PRESS HIGHWAY RESEARCH FOUNDATION OF JAPAN
OJ Bldg., 2-11-10, Minamiazabu, Minato-ku, Tokyo 106-0047
TEL: 3-6436-2100
FAX: 3-6436-2098
E-mail: soumu@express-highway.or.jp
http://www.express-highway.or.jp

Metropolitan Expressway Company Limited
1-4-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8930
TEL: 3-3539-9442
FAX: 3-3503-1806
http://www.shutoko.co.jp/english/

Tokyo Metro Co., Ltd.
3-19-6, Higashi-Ueno, Taito-ku, Tokyo 110-8614
TEL: 3-3837-7132
FAX: 3-3837-7112
http://www.tokymetro.jp/index.html

General Contractors

Fudo Tetra Corporation
7-2, Nihonbashi-koamicho, Chuo-ku, Tokyo 103-0016
TEL: 3-5644-8500
FAX: 3-5644-8510
E-mail: doboku@fudotetra.co.jp
http://www.fudotetra.co.jp/english/index.html

HAZAMA ANDO CORPORATION
6-1-20, Akasaka, Minato-ku, Tokyo 107-8658
TEL: 3-6234-3600
FAX: 3-6234-3700
http://www.ad-hzm.co.jp/english/index.html

KABUKI CONSTRUCTION Co., Ltd.
3-31-5, Takada, Toshima-ku, Tokyo 171-8560
TEL: 3-3984-4114
FAX: 3-3984-6896
E-mail: takeda.mi@kabuki.co.jp
http://www.kabuki.co.jp/

KONOIKE CONSTRUCTION CO., LTD.
3-6-1, Kitakyuhoujicho, Chuo-ku, Osaka-shi, Osaka, 541-0057
TEL: 6-6245-6500
FAX: 6-6245-6508
http://www.konoike.co.jp/
* Contact form: https://www.konoike.co.jp/english/request/index.php

Kumagai Gumi Co., Ltd.
2-1, Tsukudo-cho, Shinjuku-ku, Tokyo 162-8557
TEL: 3-3260-2111
FAX: 3-5261-5576
http://www.kumagaigumi.co.jp/english/index.html

West Nippon Expressway Company Limited
18th Fl., Dojima Avanza, 1-6-20, Dojima, Kita-ku, Osaka-shi, Osaka 530-0003
TEL: 6-6344-4000
FAX: 6-6344-7384
http://www.w-nexco.co.jp/en/
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Website Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAEDA CORPORATION</td>
<td>2-10-2, Fujimi, Chiyoda-ku, Tokyo 102-8151</td>
<td>TEL: 3-3265-5551</td>
<td>https://www.maeda.co.jp/english.html</td>
</tr>
<tr>
<td>Sato Kogyo Co., Ltd.</td>
<td>4-12-19, Nihonbashi-honcho, Chuo-ku, Tokyo 103-8639</td>
<td>TEL: 3-3661-0502</td>
<td>http://www.satokogyo.co.jp/oversea/index.html</td>
</tr>
<tr>
<td>SHIMIZU CORPORATION</td>
<td>2-16-1, Kyobashi, Chuo-ku, Tokyo 104-8370</td>
<td>TEL: 3-3561-1111</td>
<td>http://www.shimz.co.jp/english/index.html</td>
</tr>
<tr>
<td>SUMITOMO MITSUI CONSTRUCTION CO., LTD.</td>
<td>2-1-6, Tsukuda, Chuo-ku, Tokyo 104-0051</td>
<td>TEL: 3-4582-3171</td>
<td>http://www.smcon.co.jp/en/corporate/index.html</td>
</tr>
<tr>
<td>TEKKEN CORPORATION</td>
<td>2-5-3, Misaki-cho, Chiyoda-ku, Tokyo 101-8366</td>
<td>TEL: 3-3221-2131</td>
<td>http://www.tekken.co.jp</td>
</tr>
<tr>
<td>TOYO CONSTRUCTION CO., LTD.</td>
<td>Aomi Frontier Bldg., 2-4-24, Aomi, Koto-ku, Tokyo 135-0064</td>
<td>TEL: 3-6361-5462</td>
<td>http://www.toyo-const.co.jp/en/</td>
</tr>
</tbody>
</table>
Manufacturer and Trading Firms

Denka Company Limited
Nihonbashi Mitsui Tower, 2-1-1, Nihonbashi-muromachi, Chuo-ku, Tokyo 103-8338
TEL: 3-5290-5363
FAX: 3-5290-5085
http://www.denka.co.jp/eng/index.html

FTS LTD.
7th Fl., Hulic Kobunacho Bldg., 8-1, Nihonbashi-kobunacho, Chuo-ku, Tokyo 103-0024
TEL: 3-6206-2220
FAX: 3-6206-2221
E-mail: info@fts-ltd.jp
http://www.fts-web.jp/

GEOSTAR Corporation
Frontier Koishikawa Bldg., 1-28-1, Koishikawa, Bunkyo-ku, Tokyo 112-0002
TEL: 3-5844-1200
FAX: 3-5844-1203
E-mail: techinfo@geostr.co.jp
http://www.geostr.co.jp

Hokuriku Steel Production Co., Ltd.
888, Kitanoshin, Namerikawa-shi, Toyama 936-0806
TEL: 76-476-2155
FAX: 76-476-2177
E-mail: nozawa@hokuriku-kosan.co.jp
http://www.hokuriku-kosan.co.jp/

JAPEX CORPORATION
4th Fl., Shimbashi Chuo Bldg., 1-11-5, Nishi-Shimbashi, Minato-ku, Tokyo 105-0003
TEL: 3-3506-9061
FAX: 3-3580-8244
E-mail: japex-staff@highjex.jp
http://www.highjex.jp

KATCOS
1-3-3, Kamimaezu Naka-ku, Nagoya-shi, Aichi 460-8331
TEL: 52-331-8821
FAX: 52-332-0164
E-mail: kondo-sizuo@katecs.co.jp
http://katecs.jp/

KFC LTD.
11th Fl., Shiba Park Bldg. B, 2-4-1, Shibakoen, Minato-ku, Tokyo 105-0011
TEL: 3-6402-8251
FAX: 3-6402-8255
E-mail: iwama.hiroshi@kfc-net.co.jp
http://www.kfc-net.co.jp/

Mitsui Miike Machinery Co., Ltd.
2-1-1, Nihonbashi-muromachi, Chuo-ku, Tokyo 103-0022
TEL: 3-3270-2005
FAX: 3-3245-0203
E-mail: sanki@mitsuimiike.co.jp
http://www.mitsuimiike.co.jp/english/index.html

Orica Japan Co., Ltd.
7th Fl., Toranomon Misu Bldg., 3-7-11, Toranomon, Minato-ku, Tokyo 105-0001
TEL: 3-5777-4681
FAX: 3-5777-4682
E-mail: takeshi.yamada@orica.com
http://www.oricaminingservices.com
Specialty Contractors

DAIMARU BOUON CO., LTD.
9th Fl., Tanaka Bldg., 2-10-15, Higashikanda, Chiyoda-ku, Tokyo 101-0031
TEL: 3-5825-6700
FAX: 3-5825-6703
E-mail: info@daimaru-bouon.co.jp
http://www.daimaru-bouon.co.jp

SEIKEN CO., LTD.
1-15-17, Koishikawa, Bunkyo-ku, Tokyo 112-0002
TEL: 3-5689-2356
FAX: 3-5689-2363
E-mail: ueki-k@seikenn.co.jp
http://www.seikenn.co.jp

Consulting and Engineering Firms

CORE Institute of Technology Corp.
4th Fl., Osaka JA Bldg., 1-2-5, Nishi-Temma, Kita-ku, Osaka 530-0047
TEL: 6-6367-2122
FAX: 6-6367-2322
E-mail: fukuda@coreit.co.jp
http://www.coreit.co.jp

Japan International Consultants for Transportation Co., Ltd.
9th Fl., Shin-kokusai Bldg., 3-4-1, Marunouchi, Chiyoda-ku, Tokyo 100-0025
TEL: 3-6269-9878
FAX: 3-6269-9893
E-mail: hayasaka@jictransport.co.jp, kishida@jictransport.co.jp
http://www.jictransport.co.jp/jp/

Metro Development Co., Ltd.
11-9, Nihonbashi-kodenmacho, Chuo-ku, Tokyo 103-0001
TEL: 3-5847-7800
FAX: 3-5847-7821
http://www.metro-dev.co.jp

ORIENTAL CONSULTANTS CO., LTD.
Sumitomo Fudosan Nishi Shinjuku Bldg. No. 6, 3-12-1, Honmachi, Shibuya-ku, Tokyo 151-0071
TEL: 3-6311-7551
FAX: 3-6311-8011
E-mail: webmaster@oriconsul.com
http://www.oriconsul.com/
Metropolitan Expressway Group Companies support your road development and management.

Our Group Companies' Engineering Consulting Service

- Planning & Construction
 - Road construction technologies for various conditions.
 - Project evaluation utilizing traffic demand prediction.

- Inspection & Maintenance
 - Methods of inspection, evaluation, and repair based on our long-term experience in road maintenance.

- Operation & Traffic Management
 - Appropriate traffic control technologies according to your road network's characteristics.
 - ITS and ETC technologies to meet your needs.

Metropolitan Expressway Company Limited
http://www.shutoko.co.jp/english/

International Affairs Division, Technical Consulting Department (Headquarters)
1-4-1 Kasumigaseki, Chiyoda-ku, Tokyo, 100-8300, JAPAN
E-mail: tokyo@shutoko.jp
Obayashi Technologies lead to High-Quality Results

Mechanised Tunneling

Obayashi has completed more than 500 TBM projects over the world under challenging geologies, and made several record-breaking successful results. In a recently invented URUP method, a TBM can be launched and arrived at ground levels, meaning it eliminates shafts and drastically improves safety conditions, cost, and time. Various shapes are now also available. Obayashi’s wedge joint in combination with SFRC Segment gives you technical advantages resulting in improved productivity and water-tightness.

- Circular URUP TBM
- Non-circular URUP TBM
- Wedge joint
- High quality SFRC segment

Conventional Tunneling

With conventional drill & blast method, Obayashi has accomplished numerous records of achievement on many occasions and not limited to energy (Gas) stockpiling, road, and railroad. State-of-the-art technologies, including New Rapid Non-core Drilling System (see page 22), lead to safer working environment and rapid & high-quality delivery in various ground conditions from hard rock to soft rock & soil.

- Rapid investigation ahead of tunnel face
- Advanced tunnel design technology
- Rapid tunnel construction system
- Face stabilization technology
- High-quality tunnel lining technology
- Tunnel repair & reconstruction technology

Surface Tunneling

Obayashi responds to customers concerns with unique technologies such as Inclined-Braceless Excavation Support (BES). In example, when using BES, a horizontal shoring system can be eliminated and productivity will drastically improve with cost-saving coming from this technology, passed on to the client. Along with BES, Obayashi provides many other options that are attractive to customers.

- Inclined-Braceless Excavation Support (BES)
- Quadruple arch culvert tunnel
- Self-supporting retaining wall by improved ground
- Construction using precast elements
- Pneumatic caisson method

For 125 years, Obayashi Corporation has been contributing to the industry on various occasions. Customer satisfaction is a top priority that Obayashi pursues and is assured by Obayashi’s comprehensive engineering services from conceptual design to construction, maintenance phases, and supported by in-house quality resources including Design & Technical Divisions, Technical Research Institute, Machinery Works, in addition to Field Project Management Groups. Please tell us your concerns and challenges.
Pioneering Underground Technologies

Herrenknecht is a technology and market leader in the area of mechanized tunneling systems.

As the only company worldwide, Herrenknecht delivers cutting-edge tunnel boring machines for all ground conditions and in all diameters — ranging from 0.10 to 19 meters.

The Herrenknecht product range includes tailor-made machines for transport tunnels (Traffic Tunneling) and supply and disposal tunnels (Utility Tunneling).

Under the umbrella of the Herrenknecht Group, a team of innovative specialists has formed to provide integrated solutions around tunnel construction with project-specific equipment and service packages upon request: these include separation plants, conveyor belt systems, navigation systems, rolling stock systems and segment moulds right up to turnkey lining segment production plants.

The range of products also includes services in the area of technical consultancy, planning and supervision for tunneling projects as well as personnel solutions to complement construction site crews on a temporary basis.

Herrenknecht international. In the year 2014, the Herrenknecht Group achieved a total output of 1,174 million euro.

The Herrenknecht Group employs around 5,100 members of staff worldwide including around 200 trainees.

With 80 subsidiaries and associated companies working in related fields in Germany and abroad, Herrenknecht is able to provide a comprehensive range of services close to the project site and the customer, quickly and in a targeted way.

HERRENKNECHT AG
77963 Schwäbisch Gmünd
Germany
Phone +49 7824 302-0
Fax +49 7824 302-300
www.herrenknecht.com

HERRENKNECHT ASIA HEADQUARTERS PTE LTD
152 Beach Road, No. 17-02 Gateway East
Singapore 189721
Phone +65 65909191
asia@herrenknecht.com

HERRENKNECHT ASIA HEADQUARTERS PTE LTD
152 Beach Road, No. 17-02 Gateway East
Singapore 189721
Phone +65 65909191
asia@herrenknecht.com

HERRENKNECHT PTE LTD
152 Beach Road, No. 17-02 Gateway East
Singapore 189721
Phone +65 65909191
asia@herrenknecht.com
Reproduction or translation of all or any part of this publication is permissible if such is undertaken in connection with the advancement of the state-of-the-art or technology of tunnelling.
Should you require further details on these articles or other information on tunnelling activities in Japan, please contact:

Japan Tunnelling Association
Tsukiji MK Bldg., 11-26, Tsukiji 2-chome, Chuo-ku, Tokyo, 104-0045, Japan
TEL: (+81)-3-3524-1755 FAX: (+81)-3-5148-3655
E-mail: jta@japan-tunnel.org
http://www.japan-tunnel.org