SHOTCRETE FOR UNDERGROUND SUPPORT IX

Edited by Koichi Ono

Japan Tunnelling Association
SHOTCRETE FOR UNDERGROUND SUPPORT IX

Kyoudai-Kaikan Kyoto, Japan
November 17-20, 2002

Conference Chair
Koichi ONO
Kyoto University, JAPAN

Conference Co-chair
Dudley R. MORGAN
AMEC Earth & Environmental Limited, CANADA

Secretary
Naoki TOMISAWA
Konoike Construction Co., Ltd.

Sponsored by
Japan Tunnelling Association (JTA)
International Tunnelling Association (ITA)
This proceeding consists of 35 papers presented at the SHOTCRETE FOR UNDERGROUND SUPPORT IX conference held in Kyoto, Japan, November 17-20, 2002. It covers the themes of materials, support mechanism and application concerning shotcrete. This book presents the state-of-the-art for the use of shotcrete in the world.

Japanese Tunnelling Association is not responsible for any statements made or opinions expressed in its publications.

Copyright © 2002 by the Japan Tunnelling Association
ALL Rights Reserved.
No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. All requests for permission to reproduce material from this book should be directed to Japan Tunnelling Association, Shinko-No.1-Building 2-14-7 Shintoshi Chuo-ku Tokyo, 104-0041 Japan.
FOREWORD

Human beings have been realizing various advantages of underground space use for the long history and have been trying creation of tunnel and underground space at their every stage of development although these works have always been difficult. The most rapid increase in the use of tunnel and underground space appeared in the 19th and particularly in the 20th century. During these periods, tunnel and underground space use has been extended to various facilities such as road, waterway, railway, subway, underground infrastructure, car park, shopping mall, powerhouse, warehouse, sewage station, storage for oil, gas and radioactive waste, museum, concert hall, sport center.

Underground space has various fundamental characteristics, such as easier creation of new space, mechanical, thermal, acoustic and opaque isolation and no disturbance to the ground surface. Various advantages of tunnel and underground use have strongly encouraged human beings to go underground even with difficult conditions. Strong demand to conquer such difficult conditions has yielded various excavation and support technology in tunnel and underground works. Untiring efforts for construction of tunnel and underground space will continue.

The use of shotcrete in tunnel and underground excavation has been realized to be very efficient for rock support. The International Conference of Shotcrete for Underground Support has been making tremendous contributions to the development of tunnel and underground construction technology. It is a great honor for Japanese researchers and engineers in the tunnel and underground field to be able to host this professional conference in Japan.

The wide use of shotcrete for underground support in tunnel and underground works in Japan started only in 1970th. Since then, the use of shotcrete increased with a tremendous rate owing to the abrupt increase of tunneling works particularly for Shinkansen and highway constructions. The annual use of shotcrete for tunnel excavation in Japan reaches 2 million m³ every year.

The tunnel and underground space use has wonderful and tremendous future. The role of shotcrete will also become more and more important. The 9th International Conference on Shotcrete for Underground Support, SUS9 contains many important information and developed technology. The contributions made by the authors of the papers are highly appreciated. I would also like to thank all the SUS9 preparation committee member for their unlimited voluntary efforts to make this conference a success.

 Koichi Ono
 Kyoto University
 Kyoto Japan
CONFERECE ORGANIZING COMMITTEE

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>K. Ono</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Vice-Chair</td>
<td>D. R. Morgan</td>
<td>AMEC Earth & Environmental Limited, Canada</td>
</tr>
<tr>
<td></td>
<td>B. Maidl</td>
<td>Ruhr-Universität Bochum, Germany</td>
</tr>
<tr>
<td></td>
<td>C. A. Soto</td>
<td>Arcadis Geotecnica, Chili</td>
</tr>
<tr>
<td></td>
<td>C. Windsor</td>
<td>Rock Technology, Pty. Ltd. Australia</td>
</tr>
<tr>
<td></td>
<td>H. Hagiwara</td>
<td>Japan Tunnelling Association, Japan</td>
</tr>
<tr>
<td></td>
<td>H. Parker</td>
<td>Parker & Associates, U.S.</td>
</tr>
<tr>
<td></td>
<td>H. Klapperich</td>
<td>Freiberger Univ. for Mining & Technology, Germany</td>
</tr>
<tr>
<td></td>
<td>K. Garshol</td>
<td>MBT International, Norway</td>
</tr>
<tr>
<td></td>
<td>M. Annett</td>
<td>MBT International, U.K.</td>
</tr>
<tr>
<td></td>
<td>M. Vandewalle</td>
<td>BEKAERT, Belgium</td>
</tr>
<tr>
<td></td>
<td>S. Nagatomo</td>
<td>Geo-Fronte Research Association, Japan</td>
</tr>
<tr>
<td></td>
<td>S. Sakurai</td>
<td>Hiroshima Institute of Technology, Japan</td>
</tr>
<tr>
<td></td>
<td>T. B. Celestino</td>
<td>Themag Engenharia Ltda, Brazil</td>
</tr>
<tr>
<td></td>
<td>W. Jianyu</td>
<td>Chinese Tunnelling Society Chris, China</td>
</tr>
<tr>
<td>Secretary</td>
<td>N. Tomisawa</td>
<td>Konoike Construction Co., Ltd.</td>
</tr>
</tbody>
</table>

SCIENTIFIC COMMITTEE

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chair</td>
<td>K. Ono</td>
<td>Kyoto Univ.</td>
</tr>
<tr>
<td></td>
<td>K. Miyaguchi</td>
<td>Japan Tunnelling Association</td>
</tr>
<tr>
<td></td>
<td>K. Tanaka</td>
<td>Japan Railway Construction Public Corporation</td>
</tr>
<tr>
<td>Session Chair</td>
<td>N. Tomisawa</td>
<td>Konoike Construction Co., Ltd.</td>
</tr>
<tr>
<td>Session Chair</td>
<td>K. Kumagai</td>
<td>Tobishima Corporation</td>
</tr>
<tr>
<td>Session Chair</td>
<td>H. Yamachi</td>
<td>Mitsui Construction Co., Ltd.</td>
</tr>
<tr>
<td>Session Chair</td>
<td>A. Ishida</td>
<td>Denki Kagaku Kogyo K. K.</td>
</tr>
<tr>
<td></td>
<td>T. Okai</td>
<td>Nishimatsu Construction Co., Ltd.</td>
</tr>
</tbody>
</table>
SPONSORS

Japan Tunnelling Association (JTA)
International Tunnelling Association (ITA)

SHOTCRETE FOR UNDERGROUND SUPPORT IX is
a cooperative conference with the United Engineering Foundation

CO-SPONSORS

Japan Society of Civil Engineers (JSCE)
Japan Concrete Institute (JCI)
Society of Materials Science, Japan (JSMS)
Japanese Geotechnical Society (JGS)
The Japanese Committee for Rock Mechanics (ISRMJP)
Japan Railway Construction Public Corporation (JRCC)
Japan Highway Public Corporation (JHPC)
The Hanshin Expressway Public Corporation
Metropolitan Expressway Public Corporation (MEX)
Geo-fronte Research Association
CONTENTS

KEYNOTES

(KN1) Admixtures and other factors influencing durability of sprayed concrete .. 1
 Knut F. Garshol

(KN2) Sprayed concrete: A modern, holistic approach .. 10
 Tom A. Melbye, Ross H. Dimmock, and Knut F. Garshol

(KN3) Development of the shotcreting technology in Japan Railway Construction
 Public Corporation .. 20
 Minema Ikoma

(KN4) Shotcrete use in tunneling works in Japan .. 30
 Koichi Ono

SESSION-A: MATERIAL

(A1) Application of fluid alkali-free accelerating admixture in tunnel construction
 projects in Japan .. 41
 Katsumi Ookubo, Hiroto Nomura, and Kazuyoshi Yamamoto,

(A2) Application and evaluation of shotcrete which uses alkali-free liquid accelerator 50
 Sumio Kawazoe, Kazumasa Sakaguchi, Naoki Tomisawa, Masashi Kawakami,
 and Masahiro Tameishi

(A3) Wet shotcrete using alkali free liquid accelerator – Vietnam case study 60
 Masashi Kuroda and Philippe Doriot

(A4) Evaluation of the dust control agent “Kuricoat” in various shotcreting 70
 Takanori Hirao, Masahiko Mitsuta, Tadao Kimura, and Koichi Ono

(A5) New accelerator for shotcrete; Development of slurry type accelerator 79
 Atsumu Ishida, Mitsuo Takahashi, and Kenkichi Hirano

(A6) Field test of shotcrete system using slurry type accelerator .. 89
 Keisuke Iwaki, Akinobu Hirma, Tomoyuki Shirahata, Katsurou Fujimoto,
 and Katsumi Ohkubo
SESSION-B : PROPERTIES & DURABILITY

(B1) Efficiency of shotcrete accelerator: a fundamental approach ... 99
 Denis Beaupré and Marc Jolin

(B2) Fundamental study on quantitative evaluation of accelerator properties .. 112
 Yoshifumi Hosokawa and Taketo Uomoto

(B3) Effect of accelerator on quality of shotcrete .. 118
 Akinobu Hirama, Tsugio Nishimura, and Taketo Uomoto

(B4) Effect of shotcreting velocity on various properties of shotcrete .. 130
 Yoshikazu Ishizeki, Tsugio Nishimura, and Taketo Uomoto

(B5) Shotcrete response to the electric gradient method .. 138
 Danieli A. Ferreira, Tarcisio B. Celestino, and A. Airton Bortolucci

(B6) Study of shotcrete - Experiments - .. 152
 Sylvie Geromey and Catherine Larive

(B7) Durability of spraying concrete using a liquid accelerator ... 162
 Tetsuji Shimizu and Masahiro Ichige

(B8) Simulation of shotcrete using distinct element method to predict the variation of rebound ratio with mix proportion and shooting volume ... 170
 Quoc Huu Duy Phan and Taketo Uomoto

(B9) Deterioration assessment of concrete
 -A case of corrosion of concrete in a sewage treatment water environment- 178
 Tatsuo Kawahigashi, Hironobu Suzuki, and Toyoaki Miyagawa

SESSION-C : SUPPORT MECHANISM

(C1) Support mechanism of shotcrete focused on adhesion between shotcrete and rock mass 195
 * Koki Kumagai, Takanori Tsutsui, and Koichi Ono

(C2) A consideration on the failure process of shotcrete under fractured rock condition 195
 Koji Mitani, Hiromichi Shiroma, Isamu Yoshitake, and Koji Nakagawa

* Manuscript not available at the time of printing.
SESSION-D : NEW SHOTCRETE SYSTEM

(D1) New environment friendly tunnel excavation system ...203
Kenji Yamada

(D2) Boomin – The new concept for rock support ..212
Eero Puittinen

(D3) Development of centrifugal splayed system ..221
Hiroshi Yamachi, Masataka Uozumi, Yuji Nagano, Youichi Nakano, and Shunsuke Sakurai

(D4) Airless shotcrete system ...227
Hiroshi Suzuki, Hiroshi Moriyasu, Yujiro Tazawa, Tetsuya Hamada, Satoshi Kadokura, and Koichi Ono

(D5) Application of airless shotcrete system to building tunnels ..238
Yuichi Suzuki, Tatsuya Noma, Toshiro Tsuchiya, Satoshi Kadokura, and Mikio Hakutani

(D6) Properties of steel fiber concrete sprayed by airless shotcrete machine246
Tetsuya Hamada, Satoshi Kadokura, Hiroshi Suzuki, Yujiro Tazawa, and Koichi Ono

SESSION-E : APPLICATION

(E1) Application examples of shotcreting and the development trend of excavation and lining technologies ...261
Toshinori Toyoda, Akira Nakagawa, Yasuhiro Tochimoto, and Takashi Yamamoto

(E2) Development of high-quality shotcrete using coal ash and application to tunneling projects ...271
Hiroshi Haga, Kazuyo Yokoya, Ken-ichi Abe, and Fumiaki Aoya

(E3) Experiences with shotcrete support in underground openings in India281
R. K. Goel

(E4) Trial of sprayed type waterproofing membrane for the single shell lining291
Toshiyuki Matsubara, Sosuke Kurosaka, and Takeru Saitou
SESSION-F : FIBER-REINFORCEMENT & RENOVATION

(F1) The Performance of synthetic fiber reinforced concrete for shotcrete and lining303
 Dong Hexing

(F2) Quantification of shotcrete toughness ..312
 Roland Heere, Cesar Chan, and D. Rusty Morgan

(F3) Development of shotcrete lining method using short-fiber mixed mortar
 and its applicability ..323
 Yusuke Kurihashi, Fumio Taguchi, Susumu Yoshida, Norimitsu Kishi, and Hiroshi Mikami

(F4) Corroboration test of shotcrete lining method with short-fiber mixed mortar using
 prototype tunnel model ..332
 Susumu Yoshida, Fumio Taguchi, Norimitsu Kishi, and Hiroshi Mikami