THE PRESENT STATUS OF TUNNELLING ACTIVITIES IN JAPAN

JULY 1975

Prepared by

JAPAN TUNNELLING ASSOCIATION

Shinko Dai-ichi Bldg.

14-7 Shintomi 2-chome Chuo-ku TOKYO 104, JAPAN Tel: 03-553-6186 The Present Status of Tunnelling

Activities in Japan.

1. Tunnel Construction in Japan.

'n

.

A.

v

--- History, Present Status and Future Prospect. ---

1.1 The Outline of Geomorphology	and Geology
in Japan.	1
1.1.1 Geomorphology.	1
1.1.2 Geology.	3
1.2 Railway Tunnel.	13
1.2.1 Outline.	13
1.2.2 History.	14
1.2.3 Future Prospect.	20
1.3 Subway.	25
1.4 Highway.	 49
1.5 Water Supply and Sewer.	61
1.5.1 Tunnel for Water Supply.	61
(1) Outline.	
(2) History.	
(3) Future Prospect.	
1.5.2 Tunnel for Sewer.	68
(1) Outline.	
(2) History.	
(3) Future Prospect.	

1.6 Other Underground works/
1.6.1 Tunnel for Agricalture 75
(1) Introduction.
(2) Progress.
(3) Future Prospect.
1.6.2 Subsurface Urbanization8
(1) Subsurface Parking Lots.
(2) Subsurface Market Quarter.
1.6.3 Hydro-Electric Development 87
(1) Underground Station.
(2) Underground Power Line.
2. Summaries of Major Constructions.
2.1 Seikan Undersea Railway Tunnel 9
2.1.1 Outline 93
2.1.2 History of 25 Years of Surveys 99
2.1.3 Outline of the Project and the Present Status.
2.1.4 Technical Features 98
1) Advance Boring.
2) Grouting.
3) Excavation.
4) Shot-creting.
5) Drainage and Ventilation

^

(ii)

2.2 Sub	oway Construction		111
2.2.1	Outline.	:	111
2.2.2	Example in Tokyo. I - Construction of static roof shield		115
2.2.3	Example in Tokyo. II - -Large section shield in layer (Hakusan shield of Subway Line No. 6)	n water bearing	121
2.2.4	Example in Tokyo. III - - Shield work of large s and protection of exis	section in soft soil	129
2.2.5	Example in Osaka - Shield work of double a river bed		134
2.2.6	Example in Nagoya - Excavation in river be		140
2.3 Ena	-San Highway Tunnel Proje	ect :	147
2.3.1	General	:	147
2.3.2	Geological Condition and	Tunnelling Method]	151
2.3.3	Rock Loads on the Steel	Arch Supports]	152
2.3.4	Properties of the Ground	Water]	153
2.3.5	Excavation of the Ventil	ation Shafts 1	.54
2.3.6	Acknowledgments		155

 2.4
 3-Undersea Tunnels of Kanmon straits.
 162

 2.4.1
 Outline.
 162

2.4.2 Kanmon Railway Tunnel (Narrow gauge line). - 165

- (1) Outline.
- (2) Exploratory Drift.
- (3) Tunnel for Down Train.
- (4) Tunnel for Up Train.

2.4.3 New-Kanmon Railway Tunnel Rapid Trunk Line. - 174

- (1) Outline.
- (2) Design and Construction.
- (3) Outline of Execution of Works.
 - a) Inlined Shaft.
 - b) Main Tunnel.
 - c) Undersea Section.

2.4.4 Kanmon Vehicular Tunnel. - - - - - - - - - - - - - - - - 184
2.5 Railway Tunnel Works on Rapid Trunk Line. - - - - 190
2.5.1 Tunnels on Tohoku Rapid Trunk Line. - - - - 190

- (1) Outline.
- (2) The Outlines of the Works on Major Tunnels.
 - a) Zao Tunnel.
 - b) Ichinoseki Tunnel.
 - c) Fukushima Tunnel.
- (3) Advanced Technologies Applied to the Tunnel works on Tohoku Rapid Trunk Line.

(Shinkansen)198
(1) Outline.
(2) Brief Sketches of Major Tunnels.
l) Dai-Shimizu Tunnel (22.235 Km).
2) Nakayama Tunnel (14.350 Km).
3) Haruna Tunnel (14.350 Km).
(3) Technology Applied to Jo-etsu Rapid Trunk Line.
2.6 Other Expressways Tunnel Projects 211
2.6.1 Sasago Tunnel Project 211
2.6.2 Kan-etsu Tunnel Project 214
3. Outline of Construction Method Adopted in Japan.
3.1 Rock Tunnelling222
3.1.1 General 222
3.1.2 Excavation Methods224
(1) Bottom Drift Method.
(2) Side Drift Method.
(3) Upper-half Cut Method.
(4) Full-face Method.
(5) Other Methods.
(6) State of Application of the Various Excavation Methods.

2.5.2 Tunnels on Jo-etsu Rapid Trunk Line

e.

¢

t

(v)

3.1.3 Construction Equipment etc. - - - - - - - 227

- (1) Drilling.
- (2) Blasting.
- (3) Mucking and Hauling.
- (4) Concreting.
- (5) Pilot Boring.
- (6) Power Source for Construction.

3.2 Tunnelling Methods through Unfavorable Geology. - 232

- 3.2.1 Unfavorable Geology Likely to Entail Difficult Operations and Fundamental Countermeasures. - 232
- 3.2.2 Selection of Excavation Method. - - - 233
 - (1) Section Shape.
 - (2) Divisional Excavation of a Tunnel Face.
 - (3) Short Bench Cut Method.

3.2.3 Supplementary treatment in difficult ground.- 234
3.2.4 Examples of Various Methods of Construction.- 236
3.3 Shield Tunnelling Methods. - - - - - - - - 245
3.3.1 Outline. - - - - - - 245
3.3.2 Shield Tunnelling Method. - - - - - - 245
(1) Hand Mine Shield..

ð

- (2) Semi-mechanized Shield.
- (3) The Fully Mechanized Shield.

- (4) Open Face Shield.
- (5) Blind Shield.

0

¢

- (6) Laminated Face Shield.
- (7) Shield Method under Compressed Air.
- (8) Shield Partly Subject to Compressed Air.
- (9) Pressed Muddy Water Shield.
- (10) Pipe Jacking Method.

3.3.3 Example of Shield and Segment. - - - - - - 251 3.4 Cut-and-Cover Tunnelling. - - - - - - - 261 Special Problems of Cut-and-Cover Tunnelling 3.4.1 in Japan. - - - - - 261 3.4.2 Examples. **- - - - - - - - - -** - 262 3.5 Submerged Tunnel Method 3.5.1 Outline. - - - - - - - - - - - 287 3.5.2 Construction Examples. - - - -- - - - - - 288 3.5.3 Features of Submerged Tunnel Method. - - - - 288 3.5.4 Construction Procedures and Its Methods. - - 290 (1) Fabrication of Tunnel Elements. (2)Dredging of the Trench. (3)Foundation.

(4) Sinking of the Elements.

- (5) Joinning.
- (6) Joint Structure.
- (7) Backfill.

(vii)